Dirt of Vibritle Memogarises: and Radintion Control

NOV 1 6 2021

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140 & www.energyfuels.com

DRC-2021-019281

November 10, 2021

Sent VIA EXPEDITED DELIVERY

Mr. Doug Hansen Director Division of Waste Management and Radiation Control Utah Department of Environmental Quality 195 North 1950 West Salt Lake City, UT 84116

Re: Transmittal of 3rd Quarter 2021 Nitrate Monitoring Report Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Hansen:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 3rd Quarter of 2021 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

tty Win

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

cc: David Frydenlund Logan Shumway Garrin Palmer Scott Bakken

November 10, 2021

Sent VIA EXPEDITED DELIVERY

Mr. Doug Hansen Director Division of Waste Management and Radiation Control Utah Department of Environmental Quality 195 North 1950 West Salt Lake City, UT 84116

Re: Transmittal of 3rd Quarter 2021 Nitrate Monitoring Report Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Hansen:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 3rd Quarter of 2021 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

cc: David Frydenlund Logan Shumway Garrin Palmer Scott Bakken

White Mesa Uranium Mill

Nitrate Monitoring Report

State of Utah Stipulated Consent Agreement, December 2014 Docket No. UGW12-04

> 3rd Quarter (July through September) 2021

> > Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

November 10, 2021

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	1
2.0		JNDWATER NITRATE MONITORING	
2.1	Sam	ples and Measurements Taken During the Quarter	1
2.	.1.1	Nitrate Monitoring	
2.	.1.2	Parameters Analyzed	
2.	.1.3	Groundwater Head and Level Monitoring	
2.2	Sam	pling Methodology and Equipment and Decontamination Procedures	. 4
2.	.2.1	Well Purging, Sampling and Depth to Groundwater	. 4
2.	.2.2	Piezometer Sampling	
2.3	Field	d Data	. 5
2.4	Dept	th to Groundwater Data and Water Table Contour Map	. 5
2.5	Labo	pratory Results	. 5
2.	.5.1	Copy of Laboratory Results	. 5
2.	.5.2	Regulatory Framework	. 6
3.0	QUAL	ITY ASSURANCE AND DATA VALIDATION	6
3.1	Field	d QC Samples	. 6
3.2		erence to Mill Sampling SOPs	
3.3	Ana	lyte Completeness Review	. 7
3.4	Data	Validation	. 7
3.	.4.1	Field Data QA/QC Evaluation	
	.4.2	Holding Time Evaluation	8
3.	.4.3	Analytical Method Checklist	. 8
3.	.4.4	Reporting Limit Evaluation	
3.	.4.5	QA/QC Evaluation for Sample Duplicates	8
3.	.4.6	Other Laboratory QA/QC	.9
3.	.4.7	Receipt Temperature Evaluation 1	10
	.4.8	Rinsate Check 1	
4.0		RPRETATION OF DATA 1	
4.1	Inter	pretation of Groundwater Levels, Gradients and Flow Directions 1	
	.1.1	Current Site Groundwater Contour Map 1	
4.	.1.2	Comparison of Current Groundwater Contour Map to Groundwater Contour	-
		for Previous Quarter1	
	.1.4	Depth to Groundwater Measured and Groundwater Elevation1	
4.2		ctiveness of Hydraulic Containment and Capture1	
	.2.1	Hydraulic Containment and Control 1	
10.10	.2.2	Current Nitrate and Chloride Isoconcentration Maps	
		nparison of Areal Extent	
		Nitrate and Chloride Concentration Trend Data and Graphs 2	
	.2.5	Interpretation of Analytical Data	
4.3		nation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plur	
-			24
5.0		TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25	
_		ATIONS REPORT 2	
5.1		duction	
5.2	Pum	ping Well Data Collection	26

5.3	Water Level Measurements	27
5.4	Pumping Rates and Volumes	27
6.0	CORRECTIVE ACTION REPORT	27
6.1	Assessment of Previous Quarter's Corrective Actions	27
7.0	CONCLUSIONS AND RECOMMENDATIONS	28
8.0	ELECTRONIC DATA FILES AND FORMAT	32
9.0	SIGNATURE AND CERTIFICATION	33

LIST OF TABLES

Table 1	Summary of Well Sampling and Constituents for the Period
Table 2	Nitrate Mass Removal Per Well Per Quarter
Table 3	Nitrate Well Pumping Rates and Volumes
Table 4	Quarterly Calculation of Nitrate Mass Removed and Total Volume of Water Pumped
Table 5	Nitrate Data over Time for MW-30, MW-31, MW-5, and MW-11
Table 6	Slug Test Results
Table 7	Pre-Pumping Saturated Thickness
Table 8	Pre-Pumping Hydraulic Gradients and Flow Calculations
Table 9	Recalculated Background Flow

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Kriged Current Quarter Groundwater Contour Map and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control limits for Analysis and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Nitrate and Chloride Isoconcentration Maps
- Tab J Analyte Concentration Data Over Time

Tab K Nitrate and Chloride Concentration Trend Graphs

- Tab L CSV Transmittal Letter
- Tab M Residual Mass Estimate Analysis Figure

ACRONYM LIST

AWAL	American West Analytical Laboratory
CA	Consent Agreement
CAP	Corrective Action Plan
CIR	Contamination Investigation Report
DIFB	Deionized Field Blanks
DWMRC	Utah Division of Waste Management and Radiation Control
DRC	Utah Division of Radiation Control
EFRI	Energy Fuels Resources (USA) Inc.
ft amsl	feet above mean sea level
GWDP	Groundwater Discharge Permit
LCS	Laboratory Control Spike
MS	Matrix Spike
MSD	Matrix Spike Duplicate
QA	Quality Assurance
QAP	Groundwater Monitoring Quality Assurance Plan
QC	Quality Control
RPD	Relative Percent Difference
SCO	Stipulated Consent Order
SOPs	Standard Operating Procedures
UDEQ	Utah Department of Environmental Quality
VOC	Volatile Organic Compound

1.0 INTRODUCTION

The Utah Department of Environmental Quality ("UDEQ") Division of Waste Management and Radiation Control ("DWMRC") noted in a Request dated September 30, 2008 (the "Request"), for a Voluntary Plan and Schedule to Investigate and Remediate Nitrate Contamination at the White Mesa Uranium Mill (the "Mill") (the "Plan"), that nitrate levels have exceeded the State water quality standard of 10 mg/L in certain monitoring wells. As a result of the Request, Energy Fuels Resources (USA) Inc. ("EFRI") entered into a Stipulated Consent Agreement with the Utah Water Quality Board in January 2009 which directed the preparation of a Nitrate Contamination Investigation Report ("CIR"). A subsequent letter dated December 1, 2009, among other things, recommended that EFRI also address elevated chloride concentrations in the CIR. The Stipulated Consent Agreement was amended in August 2011. Under the amended Consent Agreement ("CA"), EFRI submitted a Corrective Action Plan ("CAP"), pursuant to the requirements of the Utah Groundwater Quality Protection Rules [UAC R317-6-6.15(C - E)] on November 29, 2011 and revised versions of the CAP on February 27, 2012 and May 7, 2012. On December 12, 2012, DWMRC signed the Stipulation and Consent Order ("SCO"), Docket Number UGW12-04, which approved the EFRI CAP, dated May 7, 2012. The SCO ordered EFRI to fully implement all elements of the May 7, 2012 CAP.

Based on the schedule included in the CAP and as delineated and approved by the SCO, the activities associated with the implementation of the CAP began in January 2013. The reporting requirements specified in the CAP and SCO are included in this quarterly nitrate report.

This is the Quarterly Nitrate Monitoring Report, as required under the SCO, State of Utah Docket No. UGW12-04 for the third quarter of 2021. This report meets the requirements of the SCO, State of UDEQ Docket No. UGW12-04 and is the document which covers nitrate corrective action and monitoring activities during the third quarter of 2021.

2.0 GROUNDWATER NITRATE MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Nitrate samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 Nitrate Monitoring

Quarterly sampling for nitrate monitoring parameters was performed in the following wells:

TWN-1TWN-21TWN-2TW4-22*TWN-3TW4-24*TWN-4TW4-25*TWN-7Piezometer 1TWN-18Piezometer 2TWN-20Piezometer 3A**

As discussed in Section 2.1.2 the analytical constituents required by the CAP are inorganic chloride and nitrate+nitrite as N (referred to as nitrate in this document)

* Wells TW4-22, TW4-24, TW4-25 are chloroform investigation wells (wells installed and sampled primarily for the chloroform investigation) and are sampled as part of the chloroform program. The analytical suite for these three wells includes nitrate, chloride and a select list of Volatile Organic Compounds ("VOCs") as specified in the chloroform program. These three wells are included here because they are being pumped as part of the remediation of the nitrate contamination as required by the SCO and the CAP. The nitrate and chloride data are included in this report as well as in the chloroform program quarterly report. The VOC data for these three wells will be reported in the chloroform quarterly monitoring report only.

** Piezometer 3 was abandoned and replaced with Piezometer 3A in March 2016.

The December 12, 2012 SCO approved the CAP, which specified the cessation of sampling in TWN-5, TWN-6, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-14, TWN-15, TWN-16, TWN-17, and TWN-19. The CAP and SCO also approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 within 1 year of the SCO approval. These wells were abandoned in accordance with the DWMRC-approved Well Abandonment Procedure on July 31, 2013. Wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only, as noted in the CAP.

Table 1 provides an overview of all locations sampled during the current period, along with the date samples were collected from each location, and the date(s) upon which analytical data were received from the contract laboratory. Table 1 also identifies rinsate samples collected, as well as sample numbers associated with any required duplicates.

As indicated in Table 1, nitrate monitoring was performed in the nitrate monitoring wells, chloroform wells TW4-22, TW4-24, TW4-25 and Piezometers 1, 2, and 3A. Analytical data for all of the above-listed wells, and the piezometers, are included in Tab G.

Nitrate and chloride are also monitored in all of the Mill's groundwater monitoring wells and chloroform investigation wells. Data from those wells for this quarter are incorporated in certain maps and figures in this report but are discussed in their respective programmatic reports.

2.1.2 Parameters Analyzed

Locations sampled during this reporting period were analyzed for the following constituents:

- Inorganic Chloride
- Nitrate plus Nitrite as Nitrogen (referred to herein as nitrate)

Use of analytical methods consistent with the requirements found in the White Mesa Mill Groundwater Quality Assurance Plan, ("QAP") Revision 7.6, dated August 22, 2019 was confirmed for all analytes, as discussed later in this report.

2.1.3 Groundwater Head and Level Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit ("GWDP"):

- The quarterly groundwater compliance monitoring wells
- Existing well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20, MW-22, and MW-34
- The DR piezometers that were installed during the Southwest Hydrogeologic Investigation
- Nitrate wells TWN-1, TWN-2, TWN-3, TWN-4, TWN-6, TWN-7, TWN-14, TWN-16, TWN-18, TWN-19, TWN-20 and TWN-21

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. Field data sheets for groundwater measurements are also provided in Tab C.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-1, TW4-2, TW4-11, TW4-19, TW4-4, TW4-21, TW4-37, TW4-39, TW4-40, TW4-41, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.

In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18 as required by the CAP.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP.

The sampling methodology, equipment and decontamination procedures that were performed for the nitrate contaminant investigation, as summarized below, are consistent with the QAP.

2.2.1 Well Purging, Sampling and Depth to Groundwater

A list of the wells in order of increasing nitrate contamination is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all the nondetect wells and then move to the wells with detectable nitrate concentrations, progressing from the wells having the lowest nitrate contamination to wells with the highest nitrate contamination.

Before leaving the Mill office, the pump and hose are decontaminated using the cleaning agents described in Attachment 2-2 of the QAP. Rinsate blanks are collected at a frequency of one rinsate per 20 field samples.

Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies specified in the QAP that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

1. Purging three well casing volumes with a single measurement of field parameters

2. Purging two casing volumes with stable field parameters (within 10% Relative Percent Difference ["RPD"])

3. Purging a well to dryness and stability (within 10% RPD) of a limited list of field parameters after recovery.

Mill personnel proceed to the first well, which is the well with the lowest concentration (i.e. nondetect) of nitrate based on the previous quarter's sampling results. Well depth measurements are taken and the one casing volume is calculated. The purging strategy that will be used for the well is determined at this time based on the depth to water measurement and the previous production of the well. The Grundfos pump (a 6 to 10 gallon per minute [gpm] pump) is then lowered to the appropriate depth in the well and purging is started. At the first well, the purge rate is measured for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the well has been completed, the well is sampled when possible, and the pump is removed from the well and the process is repeated at each well location moving from the least contaminated to most contaminated well. If sample collection is not possible due to the well being purged dry, a sample is collected after recovery using a disposable bailer and as described in Attachment 2-3 of the QAP. Sample collection follows the procedures described in Attachment 2-4 of the QAP. After the samples have been collected for a particular well, the samples are placed into a cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well. If a bailer has been used it is disposed of.

Decontamination of non-dedicated equipment, using the reagents in Attachment 2-2 of the QAP, is performed between each sample location, and at the beginning of each sampling day, in addition to the pre-event decontamination described above.

2.2.2 Piezometer Sampling

Samples are collected from Piezometers 1, 2 and 3A, if possible. Samples are collected from piezometers using a disposable bailer after one set of field measurements have been collected. Due to the difficulty in obtaining samples from the piezometers, the purging protocols set out in the QAP are not followed.

After samples are collected, the bailer is disposed of and samples are placed into a cooler containing ice for sample preservation and transit to the Mill's contract analytical laboratory, American West Analytical Laboratories ("AWAL").

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the nitrate investigation monitoring wells and piezometers identified in Section 2.1.1 and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Depth-to-groundwater measurements that were utilized for groundwater contours are included on the Quarterly Depth to Water Sheet at Tab C of this Report along with the kriged groundwater contour map for the current quarter generated from this data. All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab D.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

The analytical results were provided by AWAL. Table 1 lists the dates when analytical results were reported to the Quality Assurance ("QA") Manager for each well or other sample.

Analytical results for the samples collected for this quarter's nitrate investigation and a limited list of chloroform investigation nitrate and chloride results are provided under Tab G of this Report. Also included under Tab G are the results of analyses for duplicate samples and rinsate samples for this sampling effort, as identified in Table 1. See the Groundwater Monitoring Report and Chloroform Monitoring Report for this quarter for nitrate and chloroform analytical results for the groundwater monitoring wells and chloroform investigation wells not listed in Table 1.

2.5.2 Regulatory Framework

As discussed in Section 1.0 above, the Request, Plan, and CA each triggered a series of actions on EFRI's part. Potential surficial sources of nitrate and chloride have been described in the December 30, 2009 CIR and additional investigations into potential sources were completed and discussed with DWMRC in 2011. Pursuant to the CA, the CAP was submitted to the Director of the Division Waste Management and Radiation Control (the "Director") on May 7, 2012. The CAP describes activities associated with the nitrate in groundwater. The CAP was approved by the Director on December 12, 2012. This quarterly report documents the monitoring consistent with the program described in the CAP.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

EFRI's QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with the requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check field data QA/QC, holding times, receipt temperature and laboratory data QA/QC are discussed in Sections 3.4.1 through 3.4.7 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab G. Results of the review of the laboratory QA/QC information are provided under Tab H and discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the nitrate investigation program consist of one field duplicate sample for each 20 samples, DI Field Blanks ("DIFB"), and equipment rinsate samples.

During the quarter, one duplicate sample was collected as indicated in Table 1. The duplicate was sent blind to the analytical laboratory and analyzed for the same parameters as the nitrate wells.

One rinsate blank sample was collected as indicated on Table 1. Rinsate samples are labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TWN-7R).

The field QC sample results are included with the routine analyses under Tab G.

3.2 Adherence to Mill Sampling SOPs

The QA Manager review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the GWDP for nitrate monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP identify the data validation steps and data QC checks required for the nitrate monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time evaluation, an analytical method check, a reporting limit evaluation, a QC evaluation of sample duplicates, a QC evaluation of control limits for analysis and blanks, a receipt temperature evaluation, and a rinsate evaluation. Because no VOCs are analyzed for the nitrate contamination investigation, no trip blanks are required in the sampling program. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab H.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and stability of five parameters: conductance, pH, temperature, redox potential, turbidity, and dissolved oxygen ("DO"). Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period of each other. The results of this quarter's review are provided under Tab H.

Based upon the review of the field data sheets, field work was completed in compliance with the QAP purging and field measurement requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TWN-01, TWN-04, and TWN-18 were sampled after two casing volumes were removed. Field parameters pH, specific conductivity, turbidity, water temperature, DO, and redox potential were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TWN-03, TWN-07, TWN-20, and TWN-21 were purged to dryness before two casing volumes were evacuated. After well recovery, one set of measurements for the field parameters of pH, specific conductivity, and water temperature only were taken; the samples were collected,

and another set of measurements for pH, specific conductivity, and water temperature were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP. All field parameters for this requirement were stable within 10% RPD.

Continuously Pumped Wells

Wells TWN-02, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample. As previously noted, TW4-22, TW4-24, and TW4-25 are chloroform investigation wells and are sampled under the chloroform program. Data for nitrate and chloride are provided here for completeness purposes.

During review of the field data sheets, it was observed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

All field parameters for all wells were within the QAP required limits, as indicated below.

The field data collected during the quarter were in compliance with QAP requirements.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab H. All samples were received and analyzed within the required holding time.

3.4.3 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the QAP. Analytical method checks are provided in Tab H. All methods were consistent with the requirements of the QAP.

3.4.4 Reporting Limit Evaluation

All analytical method reporting limits ("RLs") reported by the laboratory were checked against the reporting limits enumerated in the QAP. Reporting Limit Checks are provided in Tab H. All analytes were measured and reported to the required reporting limits, with the exception of several samples that had increased reporting limits due to matrix interference or required dilution due to the sample concentration. However, in all of those cases the analytical results were greater than the reporting limit used.

3.4.5 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits.

However, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%.

All duplicate results were within 20% RPD for the quarterly samples. The duplicate results are provided under Tab H.

3.4.6 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate Analytical Laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab H.

The lab QA/QC results met these specified acceptance limits.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the samples were within acceptable laboratory limits except as indicated in Tab H. The data recoveries and RPDs which are outside the laboratory established acceptance limits do not affect the quality or usability of the data because the recoveries and RPDs above or below the acceptance limits are indicative of matrix interference most likely caused by other constituents in the samples. Matrix interferences are applicable to the individual sample results only. The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The information from the Laboratory QA/QC Summary Reports indicates that the Laboratory Control Sample recoveries were acceptable, which indicate that the analytical system was operating properly.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. All analytical batches routinely contain a blank, which is a laboratory-grade water blank

sample made and carried through all analytical steps. For the Mill samples, a method blank is prepared for all analytical methods. The information from the Laboratory QA/QC Summary Reports indicates that the method blanks did not contain detections of any target analytes above the Reporting Limit.

3.4.7 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement in QAP Table 1 that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab H. All samples were received within the required temperature limit.

3.4.8 Rinsate Check

Rinsate checks are provided in Tab H. A comparison of the rinsate blank sample concentration levels to the QAP requirements – that rinsate sample concentrations be one order of magnitude lower than that of the actual well – indicated that all of the rinsate blank analytes met this criterion. All rinsate and DIFB blank samples were non-detect for the quarter.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

As stated above, a listing of groundwater level readings for the current quarter (shown as depth to groundwater in feet) is included under Tab C. The data from this tab has been interpreted (interpolated by kriging) and plotted in a water table contour map, provided under the same tab. The contour map is based on the current quarter's data for all wells.

The water level contour maps indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa south of the tailings management system. Perched water mounding associated with the wildlife ponds is still evident and locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with formerly used wildlife ponds disrupts the generally southwesterly flow pattern, to the extent that locally northwesterly flow occurs near MW-19 and PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge. The perched groundwater mound associated with the southern wildlife pond is also diminishing due to reduced recharge at that location.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, resulted in changing conditions that were expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding increased hydraulic gradients and contributed to plume migration. Since use of the northern ponds was discontinued

in March, 2012, increases in constituent concentrations in many wells, and decreases in hydraulic gradients within the plumes, are attributable to reduced recharge and the decay of the associated groundwater mound. EFRI and its consultants anticipated these changes and discussed these and other potential effects during discussions with DWMRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds were expected to propagate downgradient (south and southwest) over time. Wells close to the ponds were generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations were generally expected to increase in downgradient wells close to the ponds before increases were detected in wells farther downgradient of the ponds. Although such increases were anticipated to result from reduced dilution, the magnitude and timing of the increases were anticipated to be and have been difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. Because of these complicating factors, some wells completed in higher permeability materials were expected to be impacted sooner than other wells completed in lower permeability materials even though the wells completed in lower permeability materials were closer to the ponds.

In general, nitrate concentrations within and adjacent to the nitrate plume appear to have been impacted to a lesser extent than chloroform and nitrate concentrations within and in the vicinity of the chloroform plume. This behavior is reasonable considering that the chloroform plume is generally more directly downgradient of and more hydraulically connected (via higher permeability materials) to the wildlife ponds.

Localized increases in concentrations of constituents such as nitrate and chloride within and near the nitrate plume may occur even when the nitrate plume is under control based on the Nitrate CAP requirements. Ongoing mechanisms that can be expected to increase the concentrations of nitrate and chloride locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability zones receiving primarily low constituent concentration pond water will result in wells intercepting the zones receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms was anticipated to be more evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20 (now abandoned); nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. Impacts were also expected to occur over time at wells subsequently added to the chloroform pumping network: TW4-1, TW4-2, TW4-11, TW4-21 and TW4-37 (added during 2015); TW4-39 (added during the fourth quarter of 2016); TW4-41 (added during the second quarter of 2018); and TW4-40 (added during the second quarter of 2019). The overall impact was expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduces concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by wildlife pond recharge, perched flow directions are locally influenced by operation of the chloroform and nitrate pumping wells. Well-defined cones of depression were typically evident in the vicinity of all chloroform pumping wells except TW4-4 and TW4-37, which began pumping in the first quarter of 2010 and the second quarter of 2015, respectively. The third quarter of 2018 was the first quarter that a well-defined cone of depression was associated with TW4-4, primarily the result of pumping at adjacent well TW4-41.

The lack of well-defined capture associated with chloroform pumping well TW4-4 was consistent prior to the third quarter of 2018, even though pumping since the first quarter of 2010 has depressed the water table in the vicinity of this well. The lack of a well-defined cone of depression near TW4-4 likely resulted from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14.

Pumping of nitrate wells TW4-22, TW4-24, TW4-25, and TWN-2 began during the first quarter of 2013. Water level patterns near these wells are expected to be influenced by the presence of and the decay of the groundwater mound associated with the northern wildlife ponds, and by the historically relatively low water level elevation at TWN-7. Although positioned up- to cross-gradient of the nitrate pumping wells, TWN-7 is also typically downgradient of TWN-3 and the northern (upgradient) extremity of the nitrate plume. Since 2012, water levels in TWN-7 have risen while water levels in nearby wells have generally dropped due to pumping and the decay of the northern groundwater mound. These factors have reduced water level differences between TWN-7 and nearby wells.

Capture associated with nitrate pumping is expected to continue to increase over time as water levels decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Interaction between nitrate and chloroform pumping is expected to enhance the capture of the nitrate pumping system. The long-term interaction between the nitrate and chloroform pumping systems is evolving, and changes will be reflected in data collected during routine monitoring.

As discussed above, variable permeability conditions are one likely reason for the prior lack of a well-defined cone of depression near chloroform pumping well TW4-4. Changes in water levels at wells immediately south and southeast (downgradient) of TW4-4 resulting from TW4-4 pumping were expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south and southeast of TW4-4. As will be discussed below, the permeability of the perched zone at TW4-6, TW4-26, TW4-29, TW4-30, TW4-31, TW4-33, TW4-34, and TW4-35 is one to two orders of magnitude lower than at TW4-4, and the permeability at TW4-27 is approximately three orders of magnitude lower than at TW4-4.

Detecting water level drawdowns in wells immediately south and southeast of TW4-4 resulting from TW4-4 pumping has also been complicated by a general, long-term increase in water levels in this area that has been attributable to past wildlife pond recharge. Between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to the start of TW4-4 pumping), water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, between the start of pumping at TW4-4 (first quarter of

2010) and the fourth quarter of 2013, the rate of increase in water level at TW4-6 was reduced to less than 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4.

Water levels in wells currently within the chloroform plume south of TW4-4 (TW4-26, TW4-29, TW4-30, TW4-33, and TW4-40) are trending generally downward. The downward trend is evident at TW4-26, TW4-29, and TW4-33 since the fourth quarter of 2013; at TW4-30 only since about the end of 2020; and at TW4-40 since installation in the first quarter of 2018. The water level in TW4-6 (remaining outside the plume again this quarter) has also trended downward since the fourth quarter of 2013. These downward trends are attributable to both reduced wildlife pond recharge and pumping. Although water levels at some of the wells marginal to the chloroform plume such as TW4-14, TW4-27 and TW4-31 were generally increasing until about the first quarter of 2018, these water levels now appear to be relatively stable to decreasing. Water level trends at TW4-30, which was incorporated into the chloroform plume during the fourth quarter of 2020, have been similar to those at TW4-27.

These spatially variable water level trends likely result from pumping conditions, the permeability distribution, and distance from the wildlife ponds. Wells that are relatively hydraulically isolated (due to completion in lower permeability materials or due to intervening lower permeability materials) and that are more distant from pumping wells and the wildlife ponds, are expected to respond more slowly to pumping and reduced recharge than wells that are less hydraulically isolated and are closer to pumping wells and the wildlife ponds. Wells that are more hydraulically isolated will also respond more slowly to changes in pumping.

The previous lack of a well-defined cone of depression associated with TW4-4 was also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. Although water level differences among these three wells had diminished, the water level at TW4-14 was typically lower than the water level at TW4-6 and several feet lower than the water level at TW4-4 even though TW4-4 has been pumping since 2010. However, since the first quarter of 2018, as a result of pumping at TW4-41 (adjacent to TW4-4), and declining water levels at TW4-6, the water level at TW4-14 was typically higher than the water levels at both TW4-4 and TW4-6. During the current quarter the water level at TW4-14 (approximately 5535.3 feet above mean sea level ["ft amsl"]) is more than 5 $^{1}/_{2}$ feet higher than the water level at TW4-6 (approximately 5532.4 ft. amsl).

The static water levels at wells TW4-14 and downgradient well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) were similar (within 1 to 2 feet) until the third quarter of 2014; both appeared anomalously low. Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform had not been detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26. This suggested that TW4-26 was actually downgradient of TW4-6, and TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-6. Tw4-6 was actually downgradient of TW4-14. The water level at TW4-26 (5527.7 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5529.7 feet amsl) and TW4-23 (5531.6 feet amsl), as shown in the detail water level map under Tab C.

Hydraulic tests indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4 (see Hydro Geo Chem, Inc. [HGC], September 20, 2010: Hydraulic Testing of TW4-4, TW4-6, and TW4-26, White Mesa Uranium Mill, July 2010; and HGC, November 28, 2011: Installation, Hydraulic Testing, and Perched Zone Hydrogeology of Perched Monitoring Well TW4-27, White Mesa Uranium Mill Near Blanding, Utah). Past similarity of water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27, suggested that both wells were completed in materials having lower permeability than nearby wells. The low permeability condition likely reduced the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appeared anomalously low. This behavior is consistent with hydraulic test data collected from more recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34 and TW4-35, which indicate that the permeability of these wells is one to two orders of magnitude higher than the permeability of TW4-27 (see: HGC, January 23, 2014, Contamination Investigation Report, TW4-12 and TW4-27 Areas, White Mesa Uranium Mill Near Blanding, Utah; and HGC, July 1, 2014, Installation and Hydraulic Testing of TW4-35 and TW4-36, White Mesa Uranium Mill Near Blanding, Utah [As-Built Report]). Hydraulic tests also indicate that the permeability at TW4-36 is slightly higher than but comparable to the low permeability at TW4-27, suggesting that TW4-36, TW4-14 and TW4-27 are completed in a continuous low permeability zone.

The current quarterly water level at TW4-27 (approximately 5528.8 ft. amsl) is more than 6 feet lower than the water level at TW4-14 (5535.3 ft. amsl). Increases in water level differences between TW4-14 and TW4-27 since 2013 are attributable to more rapid increases in water levels at TW4-14 compared to TW4-27. This behavior likely results primarily from: the relative positions of the wells; past water delivery to the northern wildlife ponds; and the permeability distribution. Past seepage from the ponds caused propagation of water level increases in all directions including downgradient to the south. The relative hydraulic isolation of TW4-14 and TW4-27 delayed responses at these locations. Until pumping started at TW4-41, water levels at both these wells were consistently lower than in surrounding higher permeability materials even though water levels in surrounding materials were generally decreasing due to reduced pond seepage and pumping. Although water levels at TW4-14 and TW4-27 appear to have stabilized, the previous rate of increase was higher at TW4-14 due to factors that include: closer proximity to the northern pond seepage source and a smaller thickness of low permeability materials separating TW4-14 from surrounding higher permeability materials. In addition, hydraulic gradients between TW4-14 and surrounding higher permeability materials were relatively large and were consistently directed toward TW4-14 prior to TW4-41 pumping. Slowing of the rates of water level increase at TW4-14 (since 2015) and TW4-27 (since early 2014), and relative stabilization since about the first quarter of 2018, are attributable to changes in hydraulic gradients between these wells and surrounding higher permeability materials.

In addition, water levels in this area are affected by reduced recharge at the southern wildlife pond and the decay of the associated groundwater mound. The decay of the mound is expected to contribute to changes in hydraulic gradients between the low permeability materials penetrated by TW4-14 and TW4-27 and the surrounding higher permeability materials. Because TW4-27 is closer to the southern wildlife pond than TW4-14, changes in hydraulic gradients attributable to decay of the southern groundwater mound are expected to impact TW4-27 sooner and to a

greater extent than TW4-14, consistent with the lower rate of increase in water levels at TW4-27, and the earlier reduction in the rate of increase (since early 2014) as discussed above).

4.1.2 Comparison of Current Groundwater Contour Map to Groundwater Contour Map for Previous Quarter

The groundwater contour maps for the Mill site for the previous quarter, as submitted with the Nitrate Monitoring Report for the previous quarter, are attached under Tab D. A comparison of the water table contour maps for the current quarter (third quarter of 2021) to the water table contour maps for the previous quarter (second quarter of 2021) indicates the following: water level changes at the majority of site wells were small (< 1 foot); as with the previous quarter, no significant changes to water level contours north of Cell 1 resulted from water level measurements at recently installed temporary nitrate wells TWN-20 and TWN-21; and water level contours have not changed significantly except in the vicinities of many of the nitrate and chloroform pumping wells. Overall, total capture resulting from pumping is smaller than last quarter's capture.

The drawdown at nitrate pumping well TW4-24 increased by more than 2 feet this quarter. However drawdowns at chloroform pumping wells MW-26, TW4-2, TW4-4 and TW4-21; and nitrate pumping well TWN-2 decreased by more than 2 feet this quarter. Water level changes at other nitrate and chloroform pumping wells were 2 feet or less, although both increases (decreases in drawdown) and decreases (increases in drawdown) occurred. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken. The reported water level for chloroform pumping well TW4-11 is below the depth of the Brushy Basin contact this quarter. Although both increases and decreases in drawdown occurred in pumping wells, the overall apparent capture area of the combined pumping system is smaller than last quarter.

As discussed in Section 4.1.1, pumping at chloroform well TW4-4, which began in the first quarter of 2010, depressed the water table near TW4-4, but a well-defined cone of depression was not clearly evident until the third quarter of 2018, likely due to variable permeability conditions near TW4-4 and the historic persistently low water level at adjacent well TW4-14. The expanded cone of depression associated with TW4-4 and adjacent pumping well TW4-41 since the initiation of pumping at TW4-41 in the second quarter of 2018 has contributed to southerly expansion of total pumping system capture. Southerly expansion of capture was additionally enhanced in the second quarter of 2019 quarter by the initiation of pumping at TW4-40.

Water levels at Piezometers 1 and 2 decreased by up to 0.17 feet this quarter; current and past decreases are consistent with cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. Reported water level decreases of approximately 0.13 and 0.25 feet, respectively, at TWN-1 and TWN-4 are also consistent with continuing decay of the northern groundwater mound. The reported water level decrease of approximately 0.12 feet at both Piezometers 4 and 5 likely results primarily from reduced recharge at the southern wildlife pond.

The reported water level at MW-20 increased by nearly 2 feet. Water level variability at this well likely results from low permeability and variable intervals between purging/sampling and water level measurement. The reported water level increase at MW-20 partially compensates for the reported decrease last quarter.

Measurable water was not reported at DR-22. Although DR-22 is typically dry, measurable water was reported in the bottom of its casing between the second quarter of 2015 and the third quarter of 2016.

4.1.3 Hydrographs

Attached under Tab E are hydrographs showing groundwater elevation in each nitrate contaminant investigation monitor well over time. Per the CAP, nitrate wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only. These hydrographs are also included in Tab E.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached in Tab F are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.2 Effectiveness of Hydraulic Containment and Capture

4.2.1 Hydraulic Containment and Control

The CAP states that hydraulic containment and control will be evaluated in part based on water level data and in part on concentrations in wells downgradient of pumping wells TW4-22 and TW4-24.

As per the CAP, the fourth quarter of 2013 was the first quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. Hydraulic containment and control based on water level data is considered successful per the CAP if the entire nitrate plume upgradient of TW4-22 and TW4-24 falls within the combined capture of the nitrate pumping wells. Capture zones based on water level contours calculated by kriging the current quarter's water level data are provided on water level contour maps included under Tab C. The nitrate capture zones are defined by the bounding stream tubes associated with nitrate pumping wells. Each bounding stream tube represents a flow line parallel to the hydraulic gradient and therefore perpendicular to the intersected water level contours. Assuming that the stream tubes do not change over time, all flow between the bounding stream tubes associated with a particular pumping well is presumed to eventually reach and be removed by that well. Capture associated with chloroform pumping wells is also included on these maps because the influence of the chloroform and nitrate pumping systems overlap.

The specific methodology for calculating the nitrate capture zones is substantially the same as that used since the fourth quarter of 2005 to calculate the capture zones for the chloroform program, as agreed to by the DWMRC and EFRI. The procedure for calculating nitrate capture zones is as follows:

- Calculate water level contours by gridding the water level data on approximately 50-foot centers using the ordinary linear kriging method in SurferTM. Default kriging parameters are used that include a linear variogram, an isotropic data search, and all the available water level data for the quarter, including relevant seep and spring elevations.
- 2) Calculate the capture zones by hand from the kriged water level contours following the rules for flow nets:

- From each pumping well, reverse track the stream tubes that bound the capture zone of each well,

- maintain perpendicularity between each stream tube and the kriged water level contours.

Compared to last quarter, both increases and decreases in water levels occurred at nitrate and chloroform pumping wells, although changes in water levels in chloroform pumping wells MW-4, TW4-1, TW4-11, TW4-19, TW4-37, TW4-39, TW4-40, and TW4-41; and nitrate pumping wells TW4-22 and TW4-25 were less than two feet. Water level decreases occurred in chloroform pumping wells TW4-11 (approximately 0.4 feet); TW4-19 (approximately 1 foot); and TW4-40 (approximately 0.2 feet); and in nitrate pumping wells MW-4 (approximately 2.4 feet). Water level increases occurred in chloroform pumping wells MW-26 (approximately 10.3 feet); TW4-1 (approximately 1.8 feet); TW4-2 (approximately 13.1 feet); TW4-4 (nearly 4.3 feet); TW4-21 (approximately 2.5 feet); TW4-37 (approximately 1 foot); TW4-39 (nearly 0.8 feet); and TW4-41 (approximately 0.8 feet); and in nitrate pumping wells TW4-22 (nearly 0.7 feet); TW4-25 (nearly 0.7 feet); and TW4-25 (approximately 10.1 feet). The overall apparent combined capture area of the nitrate and chloroform pumping systems is smaller than last quarter.

The capture associated with nitrate pumping wells and the eight chloroform pumping wells added since the first quarter of 2015 is expected to generally increase over time as water levels continue to decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Slow development of hydraulic capture is consistent with and expected based on the relatively low permeability of the perched zone at the site. Furthermore, although the perched groundwater mound has diminished, and water levels at TWN-7 have risen, the definition of capture associated with the nitrate pumping system continues to be influenced by the remaining perched groundwater mound and the historically relatively low water level at TWN-7.

That pumping is likely sufficient to eventually capture the entire plume upgradient of TW4-22 and TW4-24 can be demonstrated by comparing the combined average pumping rates of all nitrate pumping wells for the current quarter to estimates of pre-pumping flow through the nitrate plume near the locations of TW4-22 and TW4-24. The pre-pumping flow calculation presented from the fourth quarter of 2013 through the second quarter of 2015 was assumed to represent a steady state 'background' condition that included constant recharge, hydraulic gradients, and saturated thicknesses; the calculation did not account for reduced recharge and saturated thickness caused by cessation of water delivery to the northern wildlife ponds since March, 2012. Because significant water level declines have occurred in upgradient portions of the nitrate plume due to reduced recharge, hydraulic gradients within the plume have been reduced independent of pumping. Changes related to reduced wildlife pond recharge have also resulted in reduced well productivity. Generally reduced productivities of nitrate pumping well TW4-24 and chloroform pumping well TW4-19 since the third quarter of 2014 are at least partly the result of reduced recharge.

The pre-pumping flow through the nitrate plume near TW4-22 and TW4-24 that was presented from the fourth quarter of 2013 through the second quarter of 2015 was estimated using Darcy's Law to lie within a range of approximately 1.31 gpm to 2.79 gpm. Calculations were based on an average hydraulic conductivity range of 0.15 feet per day (ft. /day) to 0.32 ft. /day (depending on the calculation method), a pre-pumping hydraulic gradient of 0.025 feet per foot (ft. /ft.), a plume width of 1,200 feet, and a saturated thickness (at TW4-22 and TW4-24) of 56 feet. The hydraulic conductivity range was estimated by averaging the results obtained from slug test data that were collected automatically by data loggers from wells within the plume and analyzed using the KGS unconfined slug test solution available in AqtesolveTM (see Hydro Geo Chem, Inc. [HGC], August 3, 2005: Perched Monitoring Well Installation and Testing at the White Mesa Uranium Mill, April Through June 2005; HGC, March 10, 2009: Perched Nitrate Monitoring Well Installation and Hydraulic Testing, White Mesa Uranium Mill; and HGC, March 17 2009: Letter Report to David Frydenlund, Esq, regarding installation and testing of TW4-23, TW4-24, and TW4-25). These results are summarized in Table 6. Data from fourth guarter 2012 were used to estimate the pre-pumping hydraulic gradient and saturated thickness. These data are summarized in Tables 7 and 8.

The average hydraulic conductivity was estimated to lie within a range of 0.15 ft. /day to 0.32 ft. /day. Averages were calculated four ways. As shown in Table 6 arithmetic and geometric averages for wells MW-30, MW-31, TW4-22, TW4-24, TW4-25, TWN-2, and TWN-3 were calculated as 0.22 and 0.15 ft. /day, respectively. Arithmetic and geometric averages for a subset of these wells (MW-30, MW-31, TW4-22, and TW4-24) were calculated as 0.32 and 0.31 ft./day, respectively. The lowest value, 0.15 ft. /day, represented the geometric average of the hydraulic conductivity estimates for all the plume wells. The highest value, 0.32 ft. /day, represented the arithmetic average for the four plume wells having the highest hydraulic conductivity estimates (MW-30, MW-31, TW4-22, and TW4-24).

Pre-pumping hydraulic gradients were estimated at two locations; between TW4-25 and MW-31 (estimated as 0.023 ft. /ft.), and between TWN-2 and MW-30 (estimated as 0.027 ft. /ft.). These results were averaged to yield the value used in the calculation (0.025 ft. /ft.). The pre-pumping saturated thickness of 56 feet was an average of pre-pumping saturated thicknesses at TW4-22 and TW4-24.

As discussed above the hydraulic gradient and saturated thickness used in the pre-pumping calculations were assumed to represent a steady state 'background' condition that was inconsistent with the cessation of water delivery to the northern wildlife ponds, located upgradient of the nitrate plume. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and the effects of pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm has been recalculated to range from 0.79 gpm to 1.67 gpm, as presented in Table 9. This calculation is still considered conservative because the high end of the range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities. In addition, since the 'background' flow was recalculated, saturated

thicknesses and hydraulic gradients within the plume have decreased, further reducing the rate of flow through the plume.

The cumulative volume of water removed by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the current quarter was approximately 179,439 gallons. This equates to an average total extraction rate of approximately 1.4 gpm over the 90 day quarter. This average accounts for time periods when pumps were off due to insufficient water columns in the wells. The current quarter's pumping of 1.4 gpm, which is about the same as last quarter's, is near the high end of the recalculated 'background' flow range of 0.79 gpm to 1.67 gpm.

Although TW4-22, TW4-24, TW4-25, and TWN-2 are designated nitrate pumping wells, some chloroform pumping wells are also located within the nitrate plume because the northwest portion of the chloroform plume commingles with the central portion of the nitrate plume. Chloroform pumping well TW4-19 is periodically within the nitrate plume; chloroform pumping well TW4-21, since pumping began in 2015, is typically within the nitrate plume; and TW4-37 is consistently within the nitrate plume. TW4-21 was outside the plume during the second quarter of 2017; the third quarter of 2018; the first quarter of 2019; the fourth quarter of 2019; and the first quarter of 2020. TW4-19 is outside the plume this quarter. Although periodically within the nitrate plume, due to collapse, TW4-20 was abandoned during October, 2020.

Because chloroform pumping wells TW4-21 and TW4-37 were unambiguously within the nitrate plume this quarter it is appropriate to include them in estimating total pumping from the nitrate plume. Including TW4-21 and TW4-37, the volume of water removed by TW4-21, TW4-22, TW4-24, TW4-25, TW4-37, and TWN-2 this quarter is approximately 322,817 gallons or approximately 2.5 gpm, which exceeds the high end of the recalculated 'background' flow range by approximately 0.83 gpm, or a factor of approximately 1.5.

Because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used to calculate the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds the actual flow through the plume by more than a factor of 1.5 as calculated above. Nitrate pumping is therefore considered adequate at the present time even with reduced productivity at TW4-24.

The CAP states that MW-5, MW-11, MW-30, and MW-31 are located downgradient of TW4-22 and TW4-24. MW-30 and MW-31 are within the plume near its downgradient edge and MW-5 and MW-11 are outside and downgradient of the plume. Per the CAP, hydraulic control based on concentration data will be considered successful if the nitrate concentrations in MW-30 and MW-31 remain stable or decline, and the nitrate concentrations in downgradient wells MW-5 and MW-11 do not exceed the 10 mg/L standard.

Table 5 presents the nitrate concentration data for MW-30, MW-31, MW-5 and MW-11, which are down-gradient of pumping wells TW4-22 and TW4-24. Based on these concentration data, the nitrate plume is under control.

The nitrate plume has not migrated downgradient to MW-5 or MW-11; nitrate at MW-11 was detected at a concentration of less than 1 mg/L; and was not detected at MW-5 last quarter.

Between the previous and current quarters, nitrate concentrations increased at MW-30 and remained about the same at MW-31. Nitrate in MW-30 increased from approximately 17.7 mg/L to 20.6 mg/L; and nitrate in MW-31 increased slightly 18.6 mg/L to 18.7 mg/L. Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration to the south is minimal or absent.

MW-30 and MW-31 are located at the toe of the nitrate plume which has associated elevated chloride. Chloride is increasing at MW-31, as well as at MW-30, but at a lower rate (see Tab J and Tab K, discussed in Section 4.2.4). These increases are consistent with continuing downgradient migration of the elevated chloride associated with the nitrate plume. The increases in chloride and relatively stable nitrate at both wells suggest a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah. A more detailed discussion is presented in HGC, December 11, 2017; Nitrate Corrective Action Comprehensive Monitoring Evaluation (CACME) Report, White Mesa Uranium Mill Near Blanding, Utah.

4.2.2 Current Nitrate and Chloride Isoconcentration Maps

Included under Tab I of this Report are current nitrate and chloride iso-concentration maps for the Mill site. Nitrate iso-contours start at 5 mg/L and chloride iso-contours start at 100 mg/L because those values appear to separate the plumes from background. Except for data from wells not sampled this quarter, all nitrate and chloride data used to develop these iso-concentration maps are from the current quarter's sampling events. For wells not sampled this quarter, data from the second quarter were used.

4.2.3 Comparison of Areal Extent

Although the plume expanded in some areas and contracted in others, the plume area is smaller than last quarter. Specifically the northern portion of the plume boundary has contracted away from TW4-25 (due to decreases in concentration at TW4-21 and TW4-25); and the boundary has contracted away from MW-26 (due to decreases in concentration at MW-26 and TW4-16). Conversely, an increase in concentration at MW-28 caused the boundary to shift toward MW-28, although MW-28 remains outside the plume. Furthermore, TWN-7, which was incorporated within the plume for the first time during the second quarter of 2018, remains within the plume. TWN-7 has historically been located down- to cross-gradient of the northeastern (upgradient) extremity of the plume, but migration of the plume toward TWN-7 has been slow presumably due to the low permeability at TWN-7. Recently installed well TWN-20 bounds the plume to the west of TWN-7.

TW4-18 remained outside the plume with a concentration of approximately 3.4 mg/L. TW4-18 was encompassed by an eastward-extending 'spur' in the plume during the third quarter of 2015, similar to an occurrence during the third quarter of 2013. Changes in nitrate concentrations near TW4-18 are expected to result from changes in pumping and from the cessation of water delivery to the northern wildlife ponds. The reduction in low-nitrate recharge from the wildlife ponds appeared to be having the anticipated effect of generally increased nitrate concentrations in some wells downgradient of the ponds.

However, decreasing to relatively stable nitrate concentrations at most wells in the vicinity of TW4-18 between the first quarter of 2014 and the second quarter of 2015 after previous increases suggested that conditions in this area had stabilized. Since the second quarter of 2015, concentrations at TW4-18 exceeded 10 mg/L only once (third quarter of 2015). Over this same time period, concentrations at nearby wells TW4-3 and TW4-9 remained below 10 mg/L; concentrations at TW4-5 exceeded 10 mg/L only once (first quarter of 2016); and, until the first quarter of 2019, concentrations at TW4-10 remained above 10 mg/L. Since the first quarter of 2019, concentrations at TW4-10 have remained below 10 mg/L.

Although increases in concentration in the area downgradient of the wildlife ponds have been anticipated as the result of reduced dilution, the magnitude and timing of the increases are difficult to predict due to the measured variations in hydraulic conductivity at the site and other factors. Nitrate in the area directly downgradient (south to south-southwest) of the northern wildlife ponds is associated with the chloroform plume, is cross-gradient of the nitrate plume as defined in the CAP, and is within the capture zone of the chloroform pumping system. Perched water flow in the area is to the southwest in the same approximate direction as the main body of the nitrate plume.

Nitrate concentrations at the downgradient edge of the plume (MW-30 and MW-31) have been relatively stable, demonstrating that nitrate plume migration to the south is minimal or absent. As discussed in Section 4.2.1, stable nitrate at MW-30 and MW-31 is consistent with a natural attenuation process affecting nitrate but not chloride, as elevated chloride associated with the nitrate plume continues to migrate downgradient.

With regard to chloroform, changes in the boundary of the chloroform plume are attributable in part to the initiation of nitrate pumping. Once nitrate pumping started, the boundary of the chloroform plume migrated to the west toward nitrate pumping well TW4-24, and then to the southwest to reincorporate chloroform monitoring wells TW4-6 and TW4-16. Concentration increases leading to the reincorporation of these wells occurred first at TW4-24, then at TW4-16 and TW4-6. Reduced recharge at the southern wildlife pond and decay of the associated groundwater mound are also expected to influence chloroform concentrations in the vicinity of TW4-6.

Subsequent contraction of the chloroform plume eastward away from TW4-24 and TW4-16 through the first quarter of 2016 is attributable in part to the start-up of additional chloroform pumping wells during the first half of 2015, and reduced productivity at TW4-24. TW4-16 and TW4-24 are just within the chloroform plume this quarter. In addition, due to contraction of the plume away from TW4-6, TW4-6 has been outside the plume since the third quarter of 2018. More details regarding the chloroform data and interpretation are included in the Quarterly Chloroform Monitoring Report submitted under separate cover.

4.2.4 Nitrate and Chloride Concentration Trend Data and Graphs

Attached under Tab J is a table summarizing values for nitrate and chloride for each well over time.

Attached under Tab K are graphs showing nitrate and chloride concentration plots in each monitor well over time.

4.2.5 Interpretation of Analytical Data

Comparing the nitrate analytical results to those of the previous quarter, as summarized in the tables included under Tab J, the following observations can be made for wells within and immediately surrounding the nitrate plume:

- a) Nitrate concentrations have increased by more than 20% in the following wells compared to last quarter: MW-28 and TW4-19;
- b) Nitrate concentrations have decreased by more than 20% in the following wells compared to last quarter: MW-26, TW4-16, TW4-18, TW4-21, TW4-22, TW4-24, TW4-25, TW4-39, TWN-1, TWN-4 and TWN-20;
- c) Nitrate concentrations have remained within 20% in the following wells compared to last quarter: MW-11, MW-27, MW-30, MW-31, TW4-37, TWN-2, TWN-3, TWN-7 and TWN-18; and
- d) MW-25, MW-29 and MW-32 remained non-detect

As indicated, nitrate concentrations for many of the wells with detected nitrate were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. The remaining wells had changes in concentration greater than 20%. The latter includes chloroform pumping wells MW-26, TW4-19, TW4-21, and TW4-39; nitrate pumping wells TW4-22, TW4-24 and TW4-25; and non-pumping wells MW-28, TW4-16, TW4-18, TWN-1, TWN-4 and TWN-20. MW-28 is located downgradient (west) of the plume; TW4-16, TW4-18, TWN-1 and TWN-20 are located outside the plume near the plume margins; and TWN-4 is located east of the plume adjacent to a wildlife pond. TW4-16, TW4-18 and TWN-11 are also located near chloroform and nitrate pumping wells.

Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. Fluctuations in concentration can also be expected at TW4-16, TW4-18, and TWN-1 because of their locations just outside of the plume; as well as at MW-28 which is located just outside and generally downgradient of the plume. In addition, concentrations at TWN-1, TWN-4 and TWN-20 are less than 3 mg/L.

MW-27, located west of TWN-2; TWN-20, located west of TWN-7; and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north (See Figure I-1 under Tab I). In addition, MW-28 and MW-29 bound the plume to the west; and the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). The nitrate concentrations at MW-5 (non-detect) and MW-11 (< 1 mg/L) are consistent with the relative stability of the downgradient margin of the plume. MW-25, MW-26, MW-32, TW4-16, TW4-18, TW4-19, TW4-25, TWN-1 and TWN-4 bound the nitrate plume to the east.

Nitrate concentrations outside the nitrate plume are typically greater than 10 mg/L at a few locations: TW4-26 (12.1 mg/L); TW4-27 (21.1 mg/L); and TW4-28 (10.2 mg/L in the third quarter of 2019; 8.1 mg/L this quarter). In the past concentrations at TW4-10, TW4-12 and TW4-38 typically exceeded 10 mg/L. However, TW4-10 dropped below 10 mg/L during the first quarter of 2019; TW4-12 dropped below 10 mg/L in the second quarter of 2019 (and is now less than 3 mg/L); and TW4-38 dropped below 10 mg/L during the first quarter of 2018. Concentrations at TW4-18 have also occasionally exceeded 10 mg/L. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells where nitrate concentrations are either non-detect, or, if detected, are less than 10 mg/L. The nitrate concentrations at all of the above wells are within 20% of last quarter's concentrations.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L since the third quarter of 2015 and (as discussed above) the concentration at TW4-10 dropped below 10 mg/L during the first quarter of 2019. Concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice since 2010, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, TW4-28 and TW4-38 is likely related to former cattle ranching operations at the site. Elevated nitrate at relatively recently installed well MW-38 and at MW-20 (far cross-gradient and far downgradient, respectively, of the tailings management system at the site) is also likely related to former cattle ranching operations.

Chloride concentrations are measured because elevated chloride (greater than 100 mg/L) is associated with the nitrate plume. Chloride concentrations at all sampled locations this quarter are within 20% of their respective concentrations during the previous quarter except at chloroform pumping wells MW-4, TW4-19, TW4-37 and TW4-39; nitrate pumping wells TW4-24 and TW4-25; and non-pumping TW4-3, TW4-5, TW4-6, TW4-8, TW4-12, TW4-14, TW4-18, TW4-30 and TW4-33. Concentrations at the above pumping wells increased; whereas concentrations at the above non-pumping wells decreased. Non-pumping wells TW4-3, TW4-6, TW4-8, TW4-14, TW4-15, TW4-6, TW4-8, TW4-14, TW4-18 and TW4-33 are located near chloroform pumping wells. Concentration fluctuations at pumping wells and at wells near pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1.

TWN-7 (located upgradient [north] of the tailings management system) was positioned historically cross- to downgradient of the upgradient (northeastern) extremities of the commingled nitrate and chloride plumes. Recent increases in both nitrate and chloride at TWN-7, which remains incorporated into both the nitrate and chloride plumes this quarter, likely result from northwesterly migration of the elevated nitrate and chloride contained within the upgradient extremities of these commingled plumes. The change in both nitrate and chloride at TWN-7 since last quarter is less than 20%.

Piezometer PIEZ-3A was installed in the second quarter of 2016 as a replacement to piezometer PIEZ-3. The chloride concentration at piezometer PIEZ-3A (81.5 mg/L) is more than 2 times

higher this quarter than the pre-abandonment first quarter 2016 concentration at PIEZ-3 (approximately 33 mg/L). The nitrate concentration at PIEZ-3A (approximately 11.2 mg/L) is also higher this quarter than the pre-abandonment first quarter 2016 PIEZ-3 concentration (approximately 2.2 mg/L).

4.3 Estimation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plume

Nitrate mass removed by pumping as summarized in Table 2 includes mass removed by both chloroform and nitrate pumping wells. Table 3 shows the volume of water pumped at each well and Table 4 provides the details of the nitrate removal for each well. Mass removal calculations begin with the third quarter of 2010 because the second quarter, 2010 data were specified to be used to establish a baseline mass for the nitrate plume. As stated in the CAP, the baseline mass is to be calculated using the second quarter, 2010 concentration and saturated thickness data "within the area of the kriged 10 mg/L plume boundary." The second quarter, 2010 data set was considered appropriate because "the second quarter, 2010 concentration peak at TWN-2 likely identifies a high concentration zone that still exists but has migrated away from the immediate vicinity of TWN-2."

As shown in Table 2, since the third quarter of 2010, a total of approximately 3,707 lb. of nitrate has been removed directly from the perched zone by pumping. Prior to the first quarter of 2013, all direct nitrate mass removal resulted from operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. During the current quarter:

- A total of approximately 64 lb. of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.
- Of the 64 lb. removed during the current quarter, approximately 29 lb. (or 45 %) was removed by the nitrate pumping wells.

The calculated nitrate mass removed directly by pumping is smaller than last quarter's approximately 91 lbs.

As discussed in Section 4.3.1, achievable pumping rates are expected to diminish over time as saturated thicknesses are reduced by pumping and by cessation of water delivery to the northern wildlife ponds. Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report provides an evaluation of reduced productivity at chloroform pumping well TW4-19 and nitrate pumping well TW4-24.

Baseline mass and current quarter mass estimates (nitrate + nitrite as N) for the nitrate plume are approximately 43,700 lb. and 28,932 lbs., respectively. Mass estimates were calculated within the plume boundaries as defined by the kriged 10 mg/L isocon by 1) gridding (kriging) the nitrate concentration data on 50-foot centers; 2) calculating the volume of water in each grid cell based on the saturated thickness and assuming a porosity of 0.18; 3) calculating the mass of nitrate+nitrite as N in each cell based on the concentration and volume of water for each cell; and 4) totaling the mass of all grid cells within the 10 mg/L plume boundary. Data used in these calculations included data from wells listed in Table 3 of the CAP.

The nitrate mass estimate for the current quarter (28,932 lb.) is smaller than the mass estimate for the previous quarter (34,143 lb) by 5,211 lb. Since pumping began, calculated nitrate mass within the plume has generally decreased at a rate that is on average higher than would be expected based on direct mass removal by pumping. Changes in the quarterly mass estimates are expected to result from several factors, primarily 1) nitrate mass removed directly by pumping, 2) natural attenuation of nitrate, and 3) re-distribution of nitrate within the plume and changes in saturated thicknesses.

Nitrate mass removed by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower both nitrate mass and concentrations within the plume. Both mechanisms are expected to continuously reduce both nitrate mass and concentrations within the plume. Reductions in saturated thickness that are not accompanied by increases in concentration will also reduce nitrate mass within the plume.

However, redistribution of nitrate within the plume is expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. In addition, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone.

Furthermore, redistribution of nitrate within the plume and changes in saturated thicknesses will be impacted by changes in pumping and in background conditions such as the decay of the perched water mound associated with the northern wildlife ponds. Cessation of water delivery to the northern wildlife ponds is expected to result in reduced saturated thicknesses and reduced dilution, which in turn is expected to result in increased nitrate concentrations in many wells.

Because of quarter to quarter variations in factors that impact the mass estimates, only longerterm analyses of the mass estimates that minimize the impacts of 'noise' can provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

The decrease in the mass estimate this quarter is attributable to plume shrinkage resulting from decreases in nitrate concentrations at MW-26, TW4-16, TW4-21 and TW4-25; and to a decrease in the average nitrate concentrations within the plume (especially at TW4-22, which decreased from approximately 89 mg/L to 25 mg/L).

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. The evaluation was to determine whether the mass estimates were increasing, decreasing, or stable.

As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line has been updated each quarter since the fourth quarter of 2014 as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

5.0 LONG TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25 OPERATIONS REPORT

5.1 Introduction

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the SCO dated December 12, 2012.

In addition, as a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. In anticipation of the final approval of the GCAP, beginning on January 14, 2015, EFRI began long term pumping of TW4-1, TW4-2, and TW4-11 and began long term pumping of TW4-21 and TW4-37 on June 9, 2015. In addition, EFRI is pumping TW4-39, TW4-40 and TW4-41. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation. TW4-20 collapsed in August of 2020 and was abandoned in October 2020.

Because wells MW-4, TW4-19, MW-26, TW4-4, TW4-01, TW4-02, TW4-11, TW4-21, TW4-37, TW4-39, TW4-40 and TW4-41 are pumping wells that may impact the removal of nitrate, they are included in this report and any nitrate removal realized as part of this pumping is calculated and included in the quarterly reports.

The following information documents the operational activities during the quarter.

5.2 **Pumping Well Data Collection**

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis,
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013,
- Measurement of water levels weekly at TW4-01, TW4-02, and TW4-11 commencing on January 14, 2015,
- Measurement of water levels weekly at TW4-21 and TW4-37 commencing on June 9, 2015, and on a monthly basis selected temporary wells and permanent monitoring well,
- Measurement of water levels weekly at TW4-39 commencing on December 7, 2016,
- Measurement of water levels weekly at TW4-41 commencing on April 3, 2018,
- Measurement of water levels weekly at TW4-40 commencing on May 13, 2019.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume

- operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents

5.3 Water Level Measurements

Beginning August 16, 2003, water level measurements from chloroform pumping wells MW-4, MW-26, and TW4-19 were conducted weekly. From commencement of pumping and regularly after March 1, 2010 water levels in these chloroform pumping wells have been measured weekly. From commencement of pumping in January 2013, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. From the commencement of pumping in December 2016, water levels in TW4-39 have been measured; from the commencement of pumping in April 2018 water levels in TW4-41 have been measured and from the commencement of pumping in May 2019 water levels in TW4-40 have been measured weekly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-4, TW4-22, TW4-25, TWN-02, TW4-01, TW4-02, TW4-11, TW4-21, TW4-37, TW4-39, TW4-40, and TW4-41 are included under Tab C.

Monthly depth to water monitoring is required for all of the chloroform contaminant investigation wells and non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18. Copies of the monthly depth to Water monitoring sheets are included under Tab C.

5.4 Pumping Rates and Volumes

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is either transferred to the Cell 1 evaporation pond or is used in the Mill process.

The pumped wells are fitted with a flow meter which records the volume of water pumped from the well in gallons. The flow meter readings shown in Tab C are used to calculate the gallons of water pumped from the wells each quarter as required by Section 7.2.2 of the CAP. The average pumping rates and quarterly volumes for each of the pumping wells are shown in Table 3. The cumulative volume of water pumped from each of the wells is shown in Table 4.

Specific operational problems observed with the well or pumping equipment which occurred during the quarter are noted for each well below.

Unless specifically noted below, no operational problems were observed with the well or pumping equipment during the quarter.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions required during the previous quarter's monitoring period.

7.0 CONCLUSIONS AND RECOMMENDATIONS

As per the CAP, the current quarter is the thirty first quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. While the apparent combined capture of the nitrate and chloroform pumping systems has expanded slightly in some areas and contracted in others, the overall capture area this quarter is smaller than last quarter's.

Capture associated with nitrate pumping wells is expected to increase over time as water levels decline due to pumping and due to cessation of water delivery to the northern wildlife ponds. Nitrate capture is enhanced by the interaction of the nitrate pumping system with the chloroform pumping system. Chloroform pumping wells located within or adjacent to the nitrate plume not only increase overall capture, but account for much of the nitrate mass removed each quarter. The long term interaction between nitrate and chloroform pumping systems is evolving as revealed by data collected as part of routine monitoring. Slow development of hydraulic capture by the nitrate pumping system was expected and is consistent with the relatively low permeability of the perched zone at the site.

The capture associated with the nitrate pumping system has been impacted by the perched groundwater mound and historically relatively low water levels at TWN-7. Although the perched groundwater mound has diminished, and water levels at TWN-7 have risen, definition of capture associated with the nitrate pumping system continues to be influenced by the remaining perched groundwater mound and the relatively low water level at TWN-7.

Nitrate pumping is likely sufficient to eventually capture the entire nitrate plume upgradient of TW4-22 and TW4-24 even with reduced productivity at TW4-24 since the third quarter of 2014. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and nitrate pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter, 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm was recalculated to range from 0.79 gpm to 1.67 gpm. This calculation is still considered conservative because the high end of the calculated range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities. In addition, since the 'background' flow was recalculated, saturated thicknesses and hydraulic gradients within the plume have decreased, further reducing the rate of flow through the plume.

The current nitrate pumping of approximately 1.4 gpm, based on water removed by TW4-22, TW4-24, TW4-25, and TWN-2, is near the high end of the recalculated 'background' flow range of 0.79 gpm to 1.67 gpm.

If water removed from the nitrate plume by chloroform pumping wells TW4-21 and TW4-37 is included, the current nitrate pumping of approximately 2.5 gpm exceeds the high end of the recalculated 'background' range by approximately 0.83 gpm, or a factor of approximately 1.5. Including TW4-37 is appropriate because this well has been within the nitrate plume consistently

since initiation of pumping in 2015. Including TW4-21 is also appropriate because this well is again within the plume this quarter.

In addition, because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used in recalculating the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds flow through the plume by a factor greater than 1.5 times the high end of the recalculated range. Nitrate pumping is considered adequate at the present time even with reduced productivity at TW4-24. Furthermore, as the groundwater mound associated with former water delivery to the northern wildlife ponds continues to decay, hydraulic gradients and saturated thicknesses will continue to decrease, and 'background' flow will be proportionally reduced, thereby reducing the amount of pumping needed.

This quarter nitrate concentrations at many of the wells within and adjacent to the nitrate plume were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration (both increases and decreases) greater than 20% occurred in chloroform pumping wells MW-26, TW4-19, TW4-21 and TW4-39; nitrate pumping wells TW4-22, TW4-24 and TW4-25; and non-pumping wells MW-28, TW4-16, TW4-18, TWN-1, TWN-4 and TWN-20. MW-28 is located downgradient (west) of the plume; TW4-16, TW4-18, TWN-1 and TWN-20 are located outside the plume near the plume margins; and TWN-4 is located east of the plume adjacent to a wildlife pond. TW4-16, TW4-18 and TWN-1 are also located near chloroform and nitrate pumping wells.

Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. Fluctuations in concentration can also be expected at TW4-16, TW4-18, and TWN-1 because of their locations just outside of the plume; as well as at MW-28 which is located just outside and generally downgradient of the plume. In addition, concentrations at TWN-1, TWN-4 and TWN-20 are less than 3 mg/L.

Concentrations at MW-25, MW-29 and MW-32 remained non-detect. As discussed in Section 4.2.3, the area of the nitrate plume is smaller than last quarter. Specifically, the northern portion of the plume boundary has contracted away from TW4-25 (due to decreases in concentration at TW4-21 and TW4-25); and the boundary has contracted away from MW-26 (due to decreases in concentration at MW-26 and TW4-16). Conversely, an increase in concentration at MW-28 caused the boundary to shift toward MW-28, although MW-28 remains outside the plume.

MW-27, located west of TWN-2; TWN-20, located west of TWN-7; and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north. During the second quarter of 2021, TWN-20 was installed west of TWN-7 because TWN-7 no longer bounded the plume to the west (see Figure I-1 under Tab I). In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). The nitrate concentration at MW-11 of less than 1 mg/L is consistent with the relative stability of the downgradient margin of the plume. MW-25, MW-26, MW-32, TW4-16, TW4-18, TW4-25, TWN-1 and TWN-4 bound the nitrate plume to the east.

Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent. Nitrate concentrations increased at MW-30 and remained about the same at MW-31. Nitrate in MW-30 increased from approximately 17.7 mg/L to 20.6 mg/L; and nitrate in MW-31 increased slightly 18.6 mg/L to 18.7 mg/L. Based on the concentration data at MW-5, MW-11, MW-30, and MW-31, the nitrate plume is under control.

Chloride is increasing at MW-31 and at MW-30, but at a lower rate. These increases are consistent with continuing downgradient migration of the elevated chloride associated with the nitrate plume. The increasing chloride and relatively stable nitrate at both wells suggests a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah. A more detailed discussion is presented in HGC, December 11, 2017; Nitrate Corrective Action Comprehensive Monitoring Evaluation (CACME) Report, White Mesa Uranium Mill Near Blanding, Utah.

Nitrate mass within the plume boundary has been calculated on a quarterly basis beginning with the first quarter of 2013. Calculated mass within the plume is expected to be impacted by factors that include pumping, natural attenuation, redistribution of nitrate within the plume, and changes in saturated thickness.

Nitrate mass removal by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower nitrate mass within the plume. Reductions in saturated thickness that are not accompanied by increases in concentration will also reduce nitrate mass within the plume.

Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Longer-term analyses of the mass estimates that minimize the impact of these quarter to quarter variations are expected to provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line was updated this quarter as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

During the current quarter, a total of approximately 64 lb. of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. Of the 64 lb. removed during the current quarter, approximately 29 lb. (or 45 %) was removed by the nitrate pumping wells.

The baseline nitrate (nitrate+nitrite as N) plume mass calculated as specified in the CAP (based on second quarter, 2010 data) was approximately 43,700 lb. The mass estimate for the current quarter (28,932 lb.) is smaller than the mass estimate for the previous quarter (34,143 lb) by 5,211 lb. or approximately 15 %. The current quarter's estimate is smaller than the baseline estimate by approximately 14,768 lb. The quarterly difference is attributable primarily to plume shrinkage resulting from decreases in nitrate concentrations at MW-26, TW4-16, TW4-21 and TW4-25; and to a decrease in the average nitrate concentrations within the plume (especially at TW4-22, which decreased from approximately 89 mg/L to 25 mg/L). Although the concentration at bounding well MW-28 increased this quarter, and the plume boundary shifted westward, MW-28 remains outside the plume.

Nitrate concentrations outside the nitrate plume are typically greater than 10 mg/L at a few locations: TW4-26 (12.1 mg/L); TW4-27 (21.1 mg/L); and TW4-28 (10.2 mg/L in the third quarter of 2019; 8.1 mg/L this quarter). In the past concentrations at TW4-10, TW4-12 and TW4-38 typically exceeded 10 mg/L. However TW4-10 dropped below 10 mg/L during the first quarter of 2019; TW4-12 dropped below 10 mg/L in the second quarter of 2019 (and is now less than 3 mg/L); and TW4-38 dropped below 10 mg/L during the first quarter of 2018. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells where nitrate concentrations are either non-detect, or, if detected, are less than 10 mg/L. Nitrate concentrations at all of the above wells are within 20% of last quarter's concentrations.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L. Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L since the third quarter of 2015 and (as discussed above) the concentration at TW4-10 dropped below 10 mg/L during the first quarter of 2019. Concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice since 2010, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, TW4-28, and TW4-38 is likely related to former cattle ranching operations at the site. Elevated nitrate at relatively recently installed well MW-38 and at MW-20 (far cross-gradient and far downgradient, respectively, of the tailings management system at the site) is also likely related to former cattle ranching operations.

Increases in both nitrate and chloride concentrations at wells near the northern wildlife ponds (for example TW4-18) were anticipated as a result of reduced dilution caused by cessation of water delivery to the northern wildlife ponds. However, decreasing nitrate concentrations at TW4-10 and TW4-18 from the first through third quarters of 2014 after previously increasing trends (interrupted in the first quarter of 2014) suggested that conditions in this area had stabilized. The temporary increase in nitrate concentration at TW4-18 in the third quarter of 2015

and the generally increased nitrate at TW4-5 and TW4-10 during the three quarters following the second quarter of 2015 suggested the continuing impact of reduced wildlife pond recharge on downgradient wells. However, since the first quarter of 2016, concentrations at TW4-5, TW4-10 and TW4-18 have been stable to decreasing.

EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds in March, 2012 during discussions with DWMRC in March 2012 and May 2013. While past recharge from the northern wildlife ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound was expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and rates of plume migration. Reduced recharge and decay of the groundwater mound associated with the southern wildlife pond is also expected to have an impact on water levels and concentrations at wells within and marginal to the downgradient (southern) extremity of the chloroform plume.

The net impact of reduced wildlife pond recharge is expected to be beneficial even though temporarily higher concentrations were also expected until continued mass reduction via pumping and natural attenuation ultimately reduces concentrations. Temporary increases in nitrate concentrations are judged less important than reduced nitrate migration rates. The actual impacts of reduced recharge on concentrations and migration rates will be defined by continued monitoring.

Nitrate mass removal from the perched zone was increased substantially by the start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the first quarter of 2013. Continued operation of these wells is therefore recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells, helps to reduce downgradient nitrate migration by removing nitrate mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of the nitrate pumping system is expected to eventually reduce nitrate concentrations within the plume and to further reduce or halt downgradient nitrate migration.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director an electronic copy of all laboratory results for groundwater quality monitoring conducted under the nitrate contaminant investigation during the quarter, in Comma Separated Values ("CSV") format. A copy of the transmittal e-mail is included under Tab L.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc.

Energy Fuels Resources (USA) Inc.

By:

2

Scott A. Bakken Vice President, Regulatory Affairs

<u>N</u> Date

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott Bakken Vice President, Regulatory Affairs Energy Fuels Resources (USA) Inc.

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab CKriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details
Map, and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control Limits for Analyses and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Isoconcentration Maps
- Tab J Analyte Concentration Data over Time
- Tab K Concentration Trend Graphs
- Tab L CSV Transmittal Letter
- Tab M Residual Mass Estimate Analysis Figure

Tables

 Table 1

 Summary of Well Sampling and Constituents for the Period

Well	Sample Collection Date	Date of Lab Report
Piezometer 01	8/19/2021	9/10/2021
Piezometer 02	8/19/2021	9/10/2021
Piezometer 03A	8/19/2021	9/10/2021
TWN-01	8/18/2021	9/10/2021
TWN-02	8/18/2021	9/10/2021
TWN-03	8/19/2021	9/10/2021
TWN-04	8/18/2021	9/10/2021
TWN-07	8/19/2021	9/10/2021
TWN-18	8/17/2021	9/10/2021
TWN-18R	8/17/2021	9/10/2021
TWN-20	8/19/2021	9/10/2021
TWN-21	8/19/2021	9/10/2021
TW4-22	8/24/2021	9/13/2021
TW4-24	8/24/2021	9/13/2021
TW4-25	8/24/2021	9/13/2021
TWN-60	8/18/2021	9/10/2021
TW4-60	8/24/2021	9/13/2021
TWN-65	8/17/2021	9/10/2021

Note: All wells were sampled for Nitrate and Chloride.

Multiple dates shown for a single laboratory depict resubmission dates for the data. Resubmissions were required to correct reporting errors.

Dates in Italics are the original laboratory submission dates.

TWN-60 is a DI Field Blank,

TWN-65 is a duplicate of TWN-18

TW4-60 is the chloroform program DI Field Blank.

Continuously pumped well.

 Table 2

 Nitrate Mass Removal Per Well Per Quarter

				-		1	viti ate ivi	uss menne	Jval I Cl	wen rer	Quarter							
Quarter	MW-4 (lbs.)	MW-26 (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	TWN-02 (lbs.)	TW4-01 (lbs.)	TW4-02 (lbs.)	TW4-11 (lbs.)	TW4-21 (lbs.)	TW4-37 (lbs.)	TW4-39 (lbs.)	TW4-40 (lbs.)	TW4-41 (lbs.)	Qtr. Totals (lbs.)
Q3 2010	3.20	0.3	5.8	1.7	4.7	NA	15.69											
Q4 2010	3.76	0.4	17.3	1.4	5.1	NA	27.97											
Q1 2011	2.93	0.2	64.5	1.4	4.3	NA	73.30											
Q2 2011	3.51	0.1	15.9	2.7	4.7	NA	27.01											
Q3 2011	3.49	0.5	3.5	3.9	5.4	NA	16.82											
Q4 2011	3.82	0.8	6.2	2.5	6.4	NA	19.71											
Q1 2012	3.62	0.4	0.7	5.0	6.0	NA	15.86											
Q2 2012	3.72	0.6	3.4	2.1	5.2	NA	15.03											
Q3 2012	3.82	0.5	3.6	2.0	4.7	NA	14.67											
Q4 2012	3.16	0.4	5.4	1.8	4.2	NA	14.92											
Q1 2013	2.51	0.4	14.1	1.4	3.6	8.1	43.4	7.5	14.8	NA	95.73							
Q2 2013	2.51	0.4	5.6	1.6	3.4	10.7	37.1	6.4	23.9	NA	91.71							
Q3 2013	2.97	0.4	48.4	1.4	3.8	6.3	72.8	6.9	33.4	NA	176.53							
Q4 2013	3.08	0.3	15.8	1.6	3.9	9.4	75.2	6.4	46.3	NA	162.07							
Q1 2014	2.74	0.4	4.1	1.2	3.6	11.2	60.4	2.3	17.2	NA	103.14							
Q2 2014	2.45	0.3	3.3	0.9	3.0	9.5	63.4	1.3	17.8	NA	101.87							
Q3 2014	2.31	0.1	4.1	0.6	3.1	8.5	56.2	1.6	16.4	NA	92.99							
Q4 2014	2.67	0.2	7.8	1.0	3.8	11.0	53.2	0.9	28.0	NA	108.57							
Q1 2015	3.67	0.5	4.3	1.3	2.4	12.7	26.7	8.6	19.2	1.45	1.07	0.72	NA	NA	NA	NA	NA	82.61
Q2 2015	1.28	0.2	0.6	0.9	3.6	9.1	16.6	0.9	21.4	1.22	0.79	0.37	3.4	8.6	NA	NA	NA	68.86
Q3 2015	3.58	0.3	11.3	1.4	3.5	13.3	14.0	1.7	20.2	1.24	0.68	0.29	15.4	31.9	NA	NA	NA	118.63
Q4 2015	3.68	0.2	10.0	0.8	3.1	11.1	26.6	1.7	17.5	0.3	0.9	0.3	16.1	32.3	NA	NA	NA	124.50
Q1 2016	3.91	0.23	15.28	1.23	3.21	6.36	24.30	0.81	34.33	0.02	0.93	0.22	15.29	26.45	NA	NA	NA	132.55
Q2 2016	3.66	0.21	1.31	1.48	3.36	12.92	13.17	1.01	19.24	0.02	1.15	0.25	14.46	27.76	NA	NA	NA	99.98
Q3 2016	3.30	0.22	9.08	1.15	3.02	11.33	14.86	1.56	12.47	0.72	0.59	0.22	15.20	27.42	NA	NA	NA	101.12
Q4 2016	3.48	0.18	8.76	1.23	1.79	12.14	26.49	1.02	12.14	0.10	1.00	0.23	14.68	22.20	0.62	NA	NA	106.06
Q1 2017	3.19	0.17	10.23	1.36	1.35	14.02	34.16	0.02	10.35	0.63	0.79	0.20	8.02	26.16	5.54	NA	NA	116.19
Q2 2017	2.94	0.20	0.22	1.02	1.37	13.99	17.58	0.83	8.88	0.87	0.77	0.19	4.85	24.26	2.15	NA	NA	80.12
Q3 2017	3.65	0.36	1.05	1.31	1.29	13.56	18.55	1.27	9.31	0.73	0.82	0.18	18.24	20.81	2.23	NA	NA	93.37
Q4 2017	4.67	0.23	0.34	1.06	1.32	15.89	28.04	1.26	10.37	0.68	0.47	0.17	17.84	22.35	1.51	NA	NA	106.21
Q1 2018	3.92	0.35	7.89	1.13	1.18	12.47	36.31	2.18	7.09	0.51	0.40	0.17	15.54	21.22	1.65	NA	NA	111.99
Q2 2018	3.94	0.20	0.46	1.16	0.96	14.07	14.89	1.12	7.22	0.40	0.47	0.16	13.73	19.96	1.38	NA	4.02	84.14
Q3 2018	3.63	0.60	2.25	0.85	0.78	9.82	14.99	0.75	6.48	0.35	0.60	0.13	0.22	16.42	1.69	NA	2.30	61.86
Q4 2018	3.81	0.39	0.21	1.04	0.77	15.27	32.56	0.61	6.30	0.38	0.45	0.14	15.43 9.25	17.38 19.49	1.97 0.85	NA NA	1.78 1.79	98.49 101.08
Q1 2019	4.71	0.41	6.38	0.82	1.01	15.69	32.04	0.48	7.10				-		-			
Q2 2019	4.07	0.57	7.53 0.28	1.08	1.24 0.77	16.15 14.95	14.74 16.54	0.60	16.35 8.01	0.11	0.51	0.15	15.61	16.91 14.55	2.42 0.54	2.4	1.26	101.72 80.19
Q3 2019 Q4 2019	3.74 3.59	0.62	0.28	0.68	0.77	14.93	28.83	0.40	5.17	0.13	0.30	0.12	5.55	14.33	0.34	2.6	1.23	76.97
Q4 2019 Q1 2020	5.33	0.18	8.16	0.08	0.78	12.02	26.73	0.00	4.44	0.30	0.40	0.12	7.95	15.48	0.41	2.5	0.88	86.86
Q1 2020 Q2 2020	4.28	0.24	1.30	6.08	0.93	12.77	20.05	0.43	4.04	0.38	0.43	0.13	14.26	15.39	1.56	2.3	0.88	85.95
Q2 2020 Q3 2020	3.48	0.02	14.96	0.00	0.95	12.46	17.40	0.04	3.05	0.18	0.45	0.13	10.46	13.95	0.80	2.4	0.75	81.69
Q3 2020 Q4 2020	3.52	0.87	1.33	0.00	0.85	12.38	31.15	1.18	2.57	0.33	0.39	0.08	14.56	14.69	2.75	1.7	0.93	89.15
Q1 2021	3.60	0.07	7.36	0.00	0.05	13.13	28.63	2.30	3.00	0.35	0.36	0.13	12.33	13.45	0.69	1.5	0.72	88.22

Table 2Nitrate Mass Removal Per Well Per Quarter

Quarter	MW-4 (lbs.)	MW-26 (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	TWN-02 (lbs.)	TW4-01 (lbs.)	TW4-02 (lbs.)	TW4-11 (lbs.)	TW4-21 (lbs.)	TW4-37 (lbs.)	TW4-39 (lbs.)	TW4-40 (lbs.)	TW4-41 (lbs.)	Qtr. Totals (lbs.)
Q2 2021	5.04	0.20	5.10	0.00	1.01	17.06	21.78	1.08	2.62	0.05	0.39	0.12	17.43	13.00	3.29	2.1	0.82	91.09
Q3 2021	2.87	0.16	8.79	0.00	0.40	6.52	11.88	0.55	9.89	0.10	0.21	0.08	10.05	10.76	0.71	0.7	0.43	64.14
Well Totals (pounds)	156.8	15.5	374.4	63.4	121.0	417.8	1071.2	67.7	486.4	11.8	16.7	5.2	319.0	507.0	33.0	21.4	19.0	3707.30

Pumping Well	Volume of Water Pumped	
Name	During the Quarter (gals)	Average Pump Rate (gpm)
MW-4	89693.5	4.0
MW-26	27945.6	16.1
TW4-19	157632.4	15.8
TW4-4	12021.0	16.3
TWN-2	21030.8	16.0
TW4-22	22272.5	16.3
TW4-24	53333.1	16.0
TW4-25	82802.3	10.5
TW4-01	8677.2	12.8
TW4-02	12694.5	16.0
TW4-11	1560.8	14.4
TW4-21	93390.4	16.4
TW4-37	49987.5	18.0
TW4-39	31436.6	18.0
TW4-40	58841.0	18.0
TW4-41	13821.0	5.9

Table 3 Well Pumping Rates and Volumes

 Table 4

 Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	1 - Span	A PARA	and the second	MW-4	AN A PARTY	-		The second	the second s	- Br - Dy	MW-26	Constanting of the	22112	UT PARTY
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Totai (grams)	Total (pounds)
Q3 2010	79859.1	4.80	4800	302266.7	1450880129	1450.9	3.20	63850.0	0.60	600	241672.3	145003350	145	0.32
Q4 2010	90042.2	5.00	5000	340809.7	1704048635	1704.0	3.76	60180.0	0.70	700	227781.3	159446910	159	0.35
Q1 2011	76247.6	4.60	4600	288597.2	1327546964	1327.5	2.93	55130.0	0.50	500	208667.1	104333525	104	0.23
Q2 2011	85849.3	4.90	4900	324939.6	1592204042	1592.2	3.51	55800.6	0.30	300	211205.3	6.34E+07	63	0.14
Q3 2011	85327.7	4.90	4900	322965.3	1582530188	1582.5	3.49	65618.0	0.90	900	248364.1	223527717	224	0.49
Q4 2011	89735.0	5.10	5100	339647.0	1732199573	1732.2	3.82	50191.3	2.00	2000	189974.1	379948141	380	0.84
Q1 2012	90376.4	4.80	4800	342074.7	1641958435	1642.0	3.62	31440.1	1.70	1700	119000.8	202301323.5	202	0.45
Q2 2012	90916.5	4.90	4900	344118.8	1686181940	1686.2	3.72	26701.2	2.50	2500	101064.1	252660294.3	253	0.56
Q3 2012	91607.0	5.00	5000	346732.5	1733662475	1733.7	3.82	25246.0	2.60	2600	95556.1	248445886	248	0.55
Q4 2012	78840.0	4.80	4800	298409.4	1432365120	1432.4	3.16	30797.0	1.46	1460	116566.6	170187301.7	170	0.38
Q1 2013	62943.7	4.78	4780	238241.9	1138796304	1138.8	2.51	22650.7	2.27	2270	85732.9	194613681.9	195	0.43
Q2 2013	71187.3	4.22	4220	269443.9	1137053387	1137.1	2.51	25343.4	2.11	2110	95924.8	202401262.6	202	0.45
Q3 2013	72898.8	4.89	4890	275922.0	1349258375	1349.3	2.97	25763.0	1.98	1980	97513.0	193075650.9	193	0.43
Q4 2013	70340.4	5.25	5250	266238.4	1397751674	1397.8	3.08	24207.6	1,38	1380	91625.8	126443557.1	126	0.28
Q1 2014	69833.8	4.70	4700	264320.9	1242308385	1242.3	2.74	23263.1	2.12	2120	88050.8	186667767	187	0.41
Q2 2014	71934.9	4.08	4080	272273.6	1110876274	1110.9	2.45	23757.5	1.42	1420	89922.1	127689435.3	128	0.28
Q3 2014	74788.2	3.70	3700	283073.3	1047371347	1047.4	2.31	24062.4	0.70	700	91076.2	63753328.8	64	0.14
Q4 2014	63093.0	5.07	5070	238807.0	1210751515	1210.8	2.67	21875.8	0.93	934	82799.9	77335109.4	77	0.17
Q1 2015	76454.3	5.75	5750	289379.5	1663932272	1663.9	3.67	24004.9	2.68	2680	90858.5	243500904.6	244	0.54
Q2 2015	60714.7	2.53	2530	229805.1	581407002.9	581.4	1.28	27804.6	0.85	845	105240.4	88928147.3	89	0.20
Q3 2015	89520.8	4.79	4790	338836.2	1623025532	1623.0	3.58	21042.0	1.75	1750	79644.0	139376947.5	139	0.31
Q4 2015	99633.4	4.43	4430	377112.4	1670608016	1670.6	3.68	19355.6	1.11	1110	73260.9	81319650.1	81	0.18
Q1 2016	90882.1	5.15	5150	343988.7	1771542055	1771.5	3.91	19150.8	1.45	1450	72485.8	105104378.1	105	0.23
Q2 2016	96540.5	4.54	4540	365405.8	1658942298	1658.9	3.66	22105.7	1.12	1120	83670.1	93710483.4	94	0.21
Q3 2016	79786.4	4.95	4950	301991.5	1494858044	1494.9	3.30	17149.5	1.57	1570	64910.9	101910046.3	102	0.22
Q4 2016	85414.0	4.88	4880	323292.0	1577664911	1577.7	3.48	18541.6	1.18	1180	70180.0	82812348.1	83	0.18
Q1 2017	76642.3	4.99	4990	290091.1	1447554616	1447.6	3.19	26107.0	0.768	768	98815.0	75889916.2	76	0.17
Q2 2017	72299.8	4.88	4880	273654.7	1335435146	1335.4	2.94	25921.8	0.922	922	98114.0	90461120.0	90	0.20
Q3 2017	95349.3	4.59	4590	360897.1	1656517691	1656.5	3.65	27489.9	1.56	1560	104049.3	162316863.5	162	0.36
Q4 2017	106679.8	5.25	5250	403783.0	2119860976	2119.9	4.67	26445.8	1.04	1040	100097.4	104101247.1	104	0,23
Q1 2018	105060.4	4.47	4470	397653.6	1777511655	1777.5	3.92	27004.7	1.57	1570	102212.8	160474079.5	160	0.35
Q2 2018	101786.2	4.64	4640	385260.8	1787609959	1787.6	3.94	26654.7	0.90	901	100888.0	90900123.6	91	0.20
Q3 2018	95480.5	4.55	4550	361393.8	1644341817.5	1644.3	3.63	25536.1	2.80	2800	96654.1	270631587.8	271	0.60
Q4 2018	102844.8	4.44	4440	389267.5	1728347833.9	1728.3	3.81	23791.3	1.96	1960	90050.1	176498138.2	176	0.39
Q1 2019	111746.9	5.05	5050	422961.9	2135957801.0	2136.0	4.71	26798.5	1.85	1850	101432.3	187649796.6	188	0.41
Q2 2019	94540.7	5.16	5160	357836.5	1846436595.4	1846.4	4.07	24050.2	2.83	2830	91030.0	257614919.8	258	0.57
Q3 2019	95517.8	4.69	4690	361534.9	1695598554.4	1695.6	3.74	24181.1	3.08	3080	91525.5	281898427.6	282	0.62
Q4 2019	99220.8	4.34	4340	375550.9	1629890816.6	1629.9	3.59	22384.8	0.977	977	84726.5	82777759.2	83	0.18
Q1 2020	102597.0	6.22	6220	388329.6	2415410391.9	2415.4	5.33	24107.0	1,17	1170	91245.0	106756644.2	107	0.24

 Table 4

 Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				MW-4							MW-26		A COLOR	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	101850.7	5.04	5040	385504.9	1942944502.7	1942.9	4.28	25418.4	2.93	2930	96208.6	281891326.9	282	0.62
Q3 2020	84607.8	4.93	4930	320240.6	1578786151.6	1578.8	3.48	23663.7	0.416	416	89567.1	37259915.5	37	0.08
Q4 2020	91258.6	4.62	4620	345413.8	1595811760.6	1595.8	3.52	28934.5	3.620	3620	109517.1	396451838.7	396	0.87
Q1 2021	93486.7	4.61	4610	353847.3	1631235928.8	1631.2	3.60	27898.0	0.349	349	105593.9	36852281.6	37	0.08
Q2 2021	93252.4	6.48	6480	352960.3	2287182964.3	2287.2	5.04	29124.1	0.810	810	110234.7	89290122.0	89	0.20
Q3 2021	89693.5	3.83	3830	339489.8	1300246017.5	1300.2	2.87	27945.6	0.671	671	105774.1	70974418.4	71	0.16

Q3 2010 3908683.11

156.8 1318489.62

 Table 4

 Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	्रात्य साम		12253	TW4-19	Condition of	a series	UT STAT	E MAR BA	Sec. 2	12.12	TW4-20			EL CLASS
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	116899.2	5.90	5900	442463.5	2610534485	2611	5.76	39098.3	5.30	5300	147987.1	784331447.2	784	1.73
Q4 2010	767970.5	2.70	2700	2906768.3	7848274525	7848	17.30	36752.5	4.60	4600	139108.2	639897777.5	640	1.41
Q1 2011	454607.9	17.00	17000	1720690.9	29251745326	29252	64.49	37187.5	4.40	4400	140754.7	619320625	619	1.37
Q2 2011	159238.9	12.00	12000	602719.2	7232630838	7233	15.95	67907.7	4.80	4800	257030.6	1233747094	1234	2.72
Q3 2011	141542.6	3.00	3000	535738.7	1607216223	1607	3.54	72311.2	6.50	6500	273697.9	1779036298	1779	3.92
Q4 2011	147647.2	5.00	5000	558844.7	2794223260	2794	6.16	72089.3	4.20	4200	272858.0	1146003602	1146	2,53
Q1 2012	148747.0	0,60	600	563007.4	337804437	338	0.74	76306.0	7.90	7900	288818.2	2281663859	2282	5.03
Q2 2012	172082.0	2.40	2400	651330.5	1563193161	1563	3.45	22956.4	11.00	11000	86890.1	955790963.1	956	2.11
Q3 2012	171345.0	2.50	2500	648540.8	1621352063	1621	3.57	22025.0	10.80	10800	83364.6	900337950	900	1.98
Q4 2012	156653.0	4.10	4100	592931.6	2431019581	2431	5.36	20114.0	11.00	11000	76131.5	837446390	837	1.85
Q1 2013	210908.0	7.99	7990	798286.8	6378311372	6378	14.06	18177.0	9.07	9070	68799.9	624015501.2	624	1.38
Q2 2013	226224.0	2.95	2950	856257.8	2525960628	2526	5.57	20252.4	9.76	9760	76655.3	748156059.8	748	1.65
Q3 2013	329460.1	17.60	17600	1247006.5	21947314022	21947	48.39	19731.0	8.65	8650	74681.8	645997872.8	646	1.42
Q4 2013	403974.0	4.70	4700	1529041.6	7186495473	7186	15.84	19280.2	9.64	9640	72975.6	703484369.5	703	1.55
Q1 2014	304851.0	1.62	1620	1153861.0	1869254877	1869	4.12	18781.6	7.56	7560	71088.4	537427971.4	537	1.18
Q2 2014	297660.0	1.34	1340	1126643.1	1509701754	1510	3.33	18462.4	5.95	5950	69880.2	415787094.8	416	0.92
Q3 2014	309742.0	1.60	1600	1172373.5	1875797552	1876	4.14	17237.9	4.30	4300	65245.5	280555441,5	281	0.62
Q4 2014	198331.0	4.72	4720	750682.8	3543222981	3543	7.81	16341.8	7.67	7670	61853.7	474417978.7	474	1.05
Q1 2015	60553.0	8.56	8560	229193.1	1961892979	1962	4.33	15744.7	9.80	9800	59593.7	584018157.1	584	1.29
Q2 2015	75102.8	0.92	916	284264.1	260385913,8	260	0.57	18754.1	5.76	5760	70984.3	408869386.6	409	0.90
Q3 2015	116503.9	11.60	11600	440967.3	5115220233	5115	11.28	17657.3	9.27	9270	66832.9	619540802.2	620	1.37
Q4 2015	112767.7	10.6	10600	426825.7	4524352892	4524	9.97	15547.4	6.23	6230	58846.9	366616243.1	367	0.81
Q1 2016	116597.0	15.7	15700	441319.6	6928718427	6929	15.28	14353.5	10.30	10300	54328.0	559578374.3	560	1.23
Q2 2016	123768.0	1.27	1270	468461.9	594946587.6	595	1.31	15818.3	11.20	11200	59872.3	670569373.6	671	1.48
Q3 2016	103609.0	10.5	10500	392160.1	4117680683	4118	9.08	12186.6	11.30	11300	46126.3	521226975.3	521	1.15
Q4 2016	104919.4	10.0	10000	397119.9	3971199290	3971	8.76	12879.6	11.40	11400	48749.3	555741860.4	556	1.23
Q1 2017	110416.7	11.1	11100	417927.2	4638992025	4639	10.23	13552.8	12.00	12000	51297.3	615568176	616	1.36
Q2 2017	109943.0	0.243	243	416134.3	101120624	101	0.22	12475.3	9.76	9760	47219.0	460857542.5	461	1,02
Q3 2017	112626.4	1.12	1120	426290.9	477445834.9	477	1.05	14556.8	10.80	10800	55097.5	595052870.4	595	1.31
Q4 2017	108891.2	0.38	377	412153.2	155381753.4	155	0.34	14271.0	8.91	8910	54015.7	481280198.9	481	1.06
Q1 2018	109856.3	8.61	8610	415806.1	3580090482	3580	7.89	14258.4	9.50	9500	53968.0	512696418	513	1.13
Q2 2018	111271.4	0.49	494	421162.2	208054151.0	208	0.46	13367.6	10.40	10400	50596.4	526202206.4	526	1.16
Q3 2018	105821.8	2.55	2550	400535.5	1021365558.2	1021	2.25	12443.6	8.14	8140	47099.0	383385763.5	383	0.85
Q4 2018	107197.4	0.233	233	405742.2	94537923.0	95	0.21	12841.1	9.72	9720	48603.6	472426637.2	472	1.04
Q1 2019	116132.8	6.58	6580	439562.6	2892322223.8	2892	6.38	14623.9	6.70	6700	55351.3	370853777,7	371	0.82
Q2 2019	100704.0	8.96	8960	381164.6	3415235174.4	3415	7.53	13439.2	9.59	9590	50867.4	487818097.5	488	1.08
Q3 2019	101026.8	0.332	332	382386.4	126952297.4	127	0.28	13787.0	10.20	10200	52183.8	532274709.0	532	1.17
Q4 2019	98806.8	0.535	535	373983.7	200081299.8	200	0.44	8317.7	9.75	9750	31482.5	306953952.3	307	0.68
Q1 2020	96857.9	10.1	10100	366607.2	3702732230.2	3703	8.16	9505.1	9.81	9810	35976.6	352930585.8	353	0.78

 Table 4

 Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	CONTRACT.		and the	TW4-19			10000	Desire a	17. T. S.	200	TW4-20						
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)			
Q2 2020	136619.7	1.1	1140	517105.6	589500343.5	590	1.30	100713.8	7.23	7230	381201.6	2756087708.6	2756	6.08			
Q3 2020	154514.4	11.6	11600	584837.0	6784109246.4	6784	14.96	12476.2		7230 381201.6 2756087708.6 2756 Well collapsed and not sampled							
Q4 2020	144512.0	1.10	1100	546977.9	601675712.0	602	1.33				Well collaps	ed and not samp	led				
Q1 2021	133462.3	6.61	6610	505154.8	3339073264.4	3339	7.36				Well collaps	ed and not samp	led				
Q2 2021	151242.8	4.04	4040	572454.0	2312714151.9	2313	5.10	·	Well collapsed and not sampled								
Q3 2021	157632.4	6.68	6680	596638.6	3985546075.1	3986	8.79		Well collapsed and not sampled								

Q3 2010 7799240.33

374.4 1018583.08

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	the second		E CHARTER	TW4-4				N CELLER		012-40	TW4-22	and the second	TE (LANCE)	6. 2 al 3.
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	76916.8	7.30	7300	291130.1	2125249642.4	2125.25	4.69	NA	NA	NA	NA	NA	NA	NA
Q4 2010	86872.1	7.10	7100	328810.9	2334557379.4	2334.56	5.15	NA	NA	NA	NA	NA	NA	NA
Q1 2011	73360.0	7.00	7000	277667.6	1943673200.0	1943.67	4.29	NA	NA	NA	NA	NA	NA	NA
Q2 2011	80334.6	7.00	7000	304066.5	2128465227.0	2128.47	4.69	NA	NA	NA	NA	NA	NA	NA
Q3 2011	97535.0	6.60	6600	369170.0	2436521835.0	2436.52	5.37	NA	NA	NA	NA	NA	NA	NA
Q4 2011	109043.5	7.00	7000	412729.6	2889107532.5	2889.11	6.37	NA	NA	NA	NA	NA	NA	NA
Q1 2012	101616.8	7.10	7100	384619.6	2730799074.8	2730.80	6.02	NA	NA	NA	NA	NA	NA	NA
Q2 2012	87759.1	7.10	7100	332168.2	2358394173.9	2358.39	5.20	NA	NA	NA	NA	NA	NA	NA
Q3 2012	80006.0	7.10	7100	302822.7	2150041241.0	2150.04	4.74	NA	NA	NA	NA	NA	NA	NA
Q4 2012	71596.0	7.00	7000	270990.9	1896936020.0	1896.94	4.18	NA	NA	NA	NA	NA	NA	NA
Q1 2013	58716.8	7.36	7360	222243.1	1635709127.7	1635.71	3.61	16677.4	58.0	58000.0	63124.0	3661189622.0	3661.2	8.07
Q2 2013	65603.4	6.30	6300	248308.9	1564345874.7	1564.35	3.45	25523.2	50.2	50200.0	96605.3	4849586662.4	4849.6	10.69
Q3 2013	63515.4	7.22	7220	240405.8	1735729796.6	1735.73	3.83	25592.9	29.7	29700.0	96869.1	2877013057.1	2877.0	6.34
Q4 2013	60233.6	7.84	7840	227984.2	1787395939.8	1787.40	3.94	24952.2	45.2	45200.0	94444.1	4268872280.4	4268.9	9.41
Q1 2014	58992.9	7.28	7280	223288.1	1625537560.9	1625.54	3.58	24532.0	54.6	54600.0	92853.6	5069807652.0	5069.8	11.18
Q2 2014	60235.3	5.91	5910	227990.6	1347424508.1	1347.42	2.97	24193.9	47.2	47200.0	91573.9	4322288622.8	4322.3	9.53
Q3 2014	69229.4	5.30	5300	262033.3	1388776378.7	1388.78	3.06	24610.9	41.5	41500.0	93152.3	3865818644.8	3865.8	8.52
Q4 2014	64422.6	7.02	7020	243839.5	1711753577.8	1711.75	3.77	23956.9	54.9	54900.0	90676.9	4978159970.9	4978.2	10.97
Q1 2015	36941.3	7.70	7700	139822.8	1076635717.9	1076.64	2.37	22046.9	69.2	69200.0	83447.5	5774568141.8	5774.6	12.73
Q2 2015	68162.8	6.33	6330	257996.2	1633115933.3	1633.12	3.60	23191.6	47.1	47100.0	87780.2	4134447702.6	4134.4	9.11
Q3 2015	64333.0	6.45	6450	243500.4	1570577612.3	1570.58	3.46	24619.9	64.7	64700.0	93186.3	6029155001.1	6029,2	13.29
Q4 2015	59235.1	6.27	6270	224204.9	1405764431.4	1405.76	3.10	23657.6	56.1	56100.0	89544.0	5023419297.6	5023.4	11.07
Q1 2016	57274.0	6.71	6710	216782.1	1454607823.9	1454.61	3.21	24517.8	31.1	31100.0	92799.9	2886076050.3	2886.1	6.36
Q2 2016	61378.0	6.56	6560	232315.7	1523991188.8	1523.99	3.36	26506.3	58.4	58400.0	100326.3	5859058577.2	5859.1	12.92
Q3 2016	50104.2	7.22	7220	189644.4	1369232546.3	1369.23	3.02	22144.1	61.3	61300.0	83815.4	5137885154.1	5137.9	11.33
Q4 2016	31656.0	6.77	6770	119818.0	811167589.2	811.17	1.79	23646.8	61.5	61500.0	89503.1	5504442987.0	5504.4	12.14
Q1 2017	23526.8	6.87	6870	89048.9	611766204.1	611.77	1.35	24066.2	69.8	69800.0	91090.6	6358121576.6	6358.1	14.02
Q2 2017	23244.9	7.06	7060	87981.9	621152542.3	621.15	1.37	23685.0	70.8	70800.0	89647.7	6347058930.0	6347.1	13.99
Q3 2017	23937.3	6.47	6470	90602.7	586199342.8	586.20	1.29	24583.2	66.1	66100.0	93047.4	6150433933.2	6150.4	13.56
Q4 2017	22900.6	6.90	6900	86678.8	598083519.9	598.08	1.32	23779.6	80.1	80100.0	90005.8	7209463458.6	7209.5	15.89
Q1 2018	23103.4	6.12	6120	87446.4	535171778.3	535.17	1.18	23982.8	62.3	62300.0	90774.9	5655276145.4	5655.3	12.47
Q2 2018	18137.0	6.34	6340	68648.5	435231775.3	435.23	0.96	23256.6	72.5	72500.0	88026.2	6381901747,5	6381.9	14.07
Q3 2018	15366.0	6.10	6100	58160.3	354777891.0	354.78	0.78	21248.7	55.4	55400.0	80426.3	4455618654.3	4455.6	9.82
Q4 2018	15420.2	6.02	6020	58365.5	351360051.1	351.36	0.77	24171.0	75.7	75700.0	91487.2	6925583689.5	6925.6	15.27
Q1 2019	16655.0	7.26	7260	63039.2	457664410.5	457.66	1.01	26149.9	71.9	71900.0	98977.4	7116473010.9	7116.5	15.69
Q2 2019	14311.9	10.4	10400	54170.5	563373631.6	563.37	1.24	23073.1	83.9	83900.0	87331.7	7327128245.7	7327.1	16.15
Q3 2019	14520.0	6.32	6320	54958.2	347335824.0	347.34	0.77	24711.7	72.5	72500.0	93533.8	6781199376.3	6781.2	14.95
Q4 2019	14399.8	6.52	6520	54503.2	355361144.4	355.36	0.78	24052.5	59.9	59900.0	91038.7	5453218878.8	5453.2	12.02
Q1 2020	14439.2	4.58	4580	54652.4	250307863.8	250.31	0.55	24746.1	57.7	57700.0	93664.0	5404412136.5	5404.4	11.91

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-4	and the second		and the			E The	TW4-22	and the second of	- Stores	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	15347.0	7.26	7260	58088.4	421721747.7	421.72	0.93	25295.3	60.5	60500.0	95742.7	5792433985.3	5792.4	12.77
Q3 2020	14389.9	7.04	7040	54465.8	383439031.4	383.44	0.85	23050.6	64.8	64800.0	87246.5	5653574560.8	5653.6	12.46
Q4 2020	15061.5	6.77	6770	57007.8	385942653.7	385.94	0.85	22866.1	64.9	64900.0	86548.2	5616977433.7	5617.0	12.38
Q1 2021	13740.8	6.75	6750	52008.9	351060264.0	351.06	0.77	22605.6	69.6	69600.0	85562.2	5955128841.6	5955.1	13.13
Q2 2021	13425.7	9.02	9020	50816.3	458362796.0	458.36	1.01	22893.3	89.3	89300.0	86651.1	7737946846.7	7737.9	17.06
Q3 2021	12021.0	4.00	4000	45499.5	181997940.0	182.00	0.40	22272.5	35.1	35100.0	84301.4	2958979578.8	2959.0	6.52

Q3 2010 2119021.70

121.0 830860.2

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		325.765	TANE	TW4-24	A CLASSIC COL	1		Martin Star	13123	10,9076 11	TW4-25	and the second	1 m - 1 - 1 - 1	12002
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	144842.6	35.9	35900	548229.2	19681429751.9	19681.4	43,39	99369.9	9.00	9000	376115.1	3385035643.5	3385.0	7.46
Q2 2013	187509.3	23.7	23700	709722.7	16820428001.9	16820.4	37.08	147310.4	5.24	5240	557569.9	2921666087.4	2921.7	6.44
Q3 2013	267703.5	32.6	32600	1013257.7	33032202568.5	33032.2	72.82	145840.9	5.69	5690	552007.8	3140924419.0	3140.9	6.92
Q4 2013	260555.3	34.6	34600	986201.8	34122582643.3	34122.6	75.23	126576.5	6.10	6100	479092.1	2922461520.3	2922.5	6.44
Q1 2014	229063.9	31.6	31600	867006.9	27397416823.4	27397.4	60.40	129979.2	2.16	2160	491971.3	1062657947.5	1062.7	2.34
Q2 2014	216984.1	35.0	35000	821284.8	28744968647.5	28745.0	63.37	124829.8	1.21	1210	472480.8	571701759.5	571.7	1.26
Q3 2014	213652.5	31.5	31500	808674.7	25473253443.8	25473.3	56.16	119663.9	1.60	1600	452927.9	724684578.4	724.7	1.60
Q4 2014	178468.7	35.7	35700	675504.0	24115493853.2	24115.5	53.17	107416.1	1.03	1030	406569.9	418767036.7	418.8	0.92
Q1 2015	92449.3	34.6	34600	349920.6	12107252777.3	12107.3	26.69	71452.4	14.40	14400	270447.3	3894441609.6	3894.4	8.59
Q2 2015	62664.2	31.8	31800	237184.0	7542451104.6	7542.5	16.63	91985.3	1.14	1140	348164.4	396907371.0	396.9	0.88
Q3 2015	66313.2	25.3	25300	250995.5	6350185188.6	6350.2	14.00	124137.1	1.63	1630	469858.9	765870045.3	765.9	1.69
Q4 2015	107799.1	29.6	29600	408019.6	12077379967.6	12077.4	26.63	116420.1	1.78	1780	440650.1	784357139.7	784.4	1.73
Q1 2016	100063.2	29.1	29100	378739.2	11021311069.2	11021.3	24.30	115483.2	0.84	837	437103.9	365855974.3	365.9	0.81
Q2 2016	65233.6	24.2	24200	246909.2	5975202059.2	5975.2	13.17	125606.0	0.96	959	475418.7	455926542.9	455.9	1.01
Q3 2016	51765.8	34.4	34400	195933.6	6740114223.2	6740.1	14.86	104983.6	1.78	1780	397362.9	707306008.3	707.3	1.56
Q4 2016	99522.5	31.9	31900	376692.7	12016495933.8	12016.5	26.49	98681.2	1.24	1240	373508.3	463150344.1	463.2	1.02
Q1 2017	99117.4	41.3	41300	375159.4	15494081526.7	15494.1	34.16	161.2	17.0	17000	610.1	10372414.0	10.4	0.02
Q2 2017	52808.7	39.9	39900	199880.9	7975249087.1	7975.2	17.58	101617.2	0.976	976	384621.1	375390195.6	375.4	0.83
Q3 2017	55574.6	40.0	40000	210349.9	8413994440.0	8414.0	18.55	124138.4	1.23	1230	469863.8	577932528.1	577.9	1.27
Q4 2017	106021.4	31.7	31700	401291.0	12720924668.3	12720.9	28.04	116731.9	1.29	1290	441830.2	569961011.5	570.0	1.26
Q1 2018	96900.2	44.9	44900	366767.3	16467849839.3	16467.8	36.31	116991.7	2.23	2230	442813.6	987474293.4	987.5	2.18
Q2 2018	53117.9	33.6	33600	201051.3	6755322050.4	6755.3	14.89	117758.3	1.14	1140	445715.2	508115288.7	508.1	1.12
Q3 2018	53142.6	33.8	33800	201144.8	6798693525.1	6798.7	14.99	111657.5	0.810	810	422623.6	342325146.4	342.3	0.75
Q4 2018	101606.4	38.4	38400	384580.2	14767880601.6	14767.9	32.56	114458.2	0.634	634	433224.3	274664198.0	274.7	0.61
Q1 2019	97701.0	39.3	39300	369798.4	14533077063.0	14533.1	32.04	90789.5	0.639	639	343638.1	219584725.6	219.6	0.48
Q2 2019	53197.3	33.2	33200	201351.9	6684881625.8	6684.9	14.74	88302.0	0.821	821	334223.1	274397140.5	274.4	0.60
Q3 2019	54445.7	36.4	36400	206077.0	7501201871.8	7501.2	16.54	87609.5	0.548	548	331602.0	181717872.7	181.7	0.40
Q4 2019	102211.0	33.8	33800	386868.7	13076162421.7	13076.2	28.83	85928.5	0.841	841	325239.5	273526407.8	273.5	0.60
Q1 2020	86344.4	37.1	37100	326813.5	12124780044.9	12124.8	26.73	85049.5	0.607	607	321912.2	195400732.1	195.4	0.43

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-24				Contraction of the		and the second	TW4-25			
Quarter	Total Pumped (qal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	57634.7	41.7	41700	218147.3	9096744057.2	9096.7	20.05	90767.9	0.851	851	343556.6	292366679.4	292.4	0.64
Q3 2020	53316.1	39.1	39100	201801.4	7890436245.4	7890.4	17.40	83956.3	0.994	994	317774.6	315867910.3	315.9	0.70
Q4 2020	103987.2	35.9	35900	393591.6	14129936716.8	14129.9	31.15	86254.4	1.64	1640	326472.7	535415252.2	535.4	1.18
Q1 2021	81891.2	41.9	41900	309958.3	12987251416.6	12987.3	28.63	80272.2	3.43	3430	303830.4	1042138109.8	1042.1	2.30
Q2 2021	54377.9	48.0	48000	205820.4	9879376872.0	9879.4	21.78	82692.8	1.57	1570	312992.2	491397829.4	491.4	1.08
Q3 2021	53333.1	26.7	26700	201865.8	5389817430.0	5389.8	11.88	82802.3	0.79	793	313406.8	248531607.5	248.5	0.55

Q3 2010 3761319.7

1071.2 3597674.87

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	all makes			TWN-02		a la	and a start of				TW4-01	202 2020		
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	31009.4	57.3	57300	117370.6	6725334176.7	6725.3	14.83	NA	NA	NA	NA	NA	NA	NA
Q2 2013	49579.3	57.7	57700	187657.7	10827846433.9	10827.8	23.87	NA	NA	NA	NA	NA	NA	NA
Q3 2013	50036.5	80.0	80000	189388.2	15151052200.0	15151.1	33.40	NA	NA	NA	NA	NA	NA	NA
Q4 2013	49979.9	111.0	111000	189173.9	20998305286.5	20998.3	46.29	NA	NA	NA	NA	NA	NA	NA
Q1 2014	48320.4	42.6	42600	182892.7	7791229616.4	7791.2	17.18	NA	NA	NA	NA	NA	NA	NA
Q2 2014	47611.9	44.7	44700	180211.0	8055433555.1	8055.4	17.76	NA	NA	NA	NA	NA	NA	NA
Q3 2014	46927.2	42.0	42000	177619.5	7460016984.0	7460.0	16.45	NA	NA	NA	NA	NA	NA	NA
Q4 2014	47585.6	70.6	70600	180111.5	12715871617.6	12715.9	28.03	NA	NA	NA	NA	NA	NA	NA
Q1 2015	47262.2	48.6	48600	178887.4	8693928952.2	8693.9	19.17	24569.2	7.06	7060	92994.4	656540619.3	656.5	1.45
Q2 2015	48497.3	52.8	52800	183562.3	9692088410.4	9692.1	21.37	23989.9	6.07	6070	90801.8	551166753.0	551.2	1.22
Q3 2015	48617.4	49.7	49700	184016.9	9145637892.3	9145.6	20.16	23652.0	6.3	6280	89522.8	562203309.6	562.2	1.2
Q4 2015	46754.1	44.9	44900	176964.3	7945695655.7	7945.7	17.52	20764.3	1.55	1550	78592.9	121818957.0	121.8	0.27
Q1 2016	47670.2	86.3	86300	180431.7	15571256314.1	15571.3	34.33	19255.6	0.15	148	72882.4	10786602.0	10.8	0.02
Q2 2016	50783.0	45.4	45400	192213.7	8726499937.0	8726.5	19.24	19588.2	0.14	138	74141.3	10231504.5	10.2	0.02
Q3 2016	42329.6	35.3	35300	160217.5	5655679020.8	5655.7	12.47	15613.5	5.49	5490	59097.1	324443065.3	324.4	0.72
Q4 2016	44640.6	32.6	32600	168964.7	5508248274.6	5508.2	12.14	16756.8	0.75	746	63424.5	47314668.0	47.3	0.10
Q1 2017	45283.2	27.4	27400	171396.9	4696275388.8	4696.3	10.35	16931.8	4.44	4440	64086.9	284545671.7	284.5	0.63
Q2 2017	42550.6	25.0	25000	161054.0	4026350525.0	4026.4	8.88	18200.2	5.74	5740	68887.8	395415725.2	395.4	0.87
Q3 2017	46668.9	23.9	23900	176641.8	4221738697.4	4221.7	9.31	17413.6	5.04	5040	65910.5	332188799.0	332.2	0.73
Q4 2017	38964.7	31.9	31900	147481.4	4704656325.1	4704.7	10.37	14089.8	5.78	5780	53329.9	308246781.5	308.2	0.68
Q1 2018	43341.0	19.6	19600	164045.7	3215295426.0	3215.3	7.09	12505.7	4.84	4840	47334.1	229096920.6	229.1	0.51
Q2 2018	43697.0	19.8	19800	165393.1	3274784271.0	3274.8	7.22	10814.8	4.38	4380	40934.0	179290998.8	179.3	0.40
Q3 2018	41776.0	18.6	18600	158122.2	2941072176.0	2941.1	6.48	9727.3	4.30	4300	36817.8	158316671.2	158.3	0.35
Q4 2018	38545.8	19.6	19600	145895.9	2859558718.8	2859.6	6.30	9836.7	4.57	4570	37231.9	170149826.4	170.1	0.38
Q1 2019	44752.8	19.0	19000	169389.3	3218397612.0	3218.4	7.10	10603.6	4.51	4510	40134.6	181007163.3	181.0	0,40
Q2 2019	43432.2	45.1	45100	164390.9	7414028552.7	7414.0	16.35	9393.9	1.43	1430	35555.9	50844953.4	50.8	0.11
Q3 2019	41377.5	23.2	23200	156613.8	3633441030.0	3633.4	8.01	9734.1	1.65	1650	36843.6	60791888.0	60.8	0.13
Q4 2019	34011.4	18.2	18200	128733.1	2342943311.8	2342.9	5.17	9184.3	3.91	3910	34762.6	135921670.2	135.9	0.30
Q1 2020	32230.0	16.5	16500	121990.6	2012844075.0	2012.8	4.44	9796.7	4.67	4670	37080.5	173165979.4	173.2	0.38

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	La stati	And the second sec		TWN-02		E all		TW4-01							
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	
Q2 2020	30078.9	16.1	16100	113848.6	1832963047.7	1833.0	4.04	9600.2	0.443	443	36336.8	16097183.4	16.1	0.04	
Q3 2020	21279.1	17.2	17200	80541.4	1385311968.2	1385.3	3.05	9487.3	2.22	2220	35909.4	79718935.7	79.7	0.18	
Q4 2020	25682.1	12.0	12000	97206.7	1166480982.0	1166.5	2.57	9318.7	4.30	4300	35271.3	151666501.9	151.7	0.33	
Q1 2021	23310.5	15.4	15400	88230.2	1358745734.5	1358.7	3.00	9066.4	2.72	2720	34316.3	93340401.3	93.3	0.21	
Q2 2021	22717.2	13.8	13800	85984.6	1186587507.6	1186.6	2.62	8764.1	0.728	728	33172.1	24149302.3	24.1	0.05	
Q3 2021	20130.8	58.9	58900	76195.0	4487885635.5	4487.9	9.89	8677.2	1.380	1380	32843.2	45323618.8	45.3	0.10	

Q3 2010 1427434.3

486.4 377335.90

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	and the second	2.3.4	Stand -	TW4-02	COLONY V.	2.3.27		Sal San Th		CID SUS N	TW4-1	1		Call State
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	24156.7	5.32	5320	91433.1	486424142.5	486.4	1.07	9898.7	8.72	8720	37466.6	326708573.2	326.7	0.72
Q2 2015	22029.9	4.30	4300	83383.2	358547637.5	358.5	0.79	5243.3	8.48	8480	19845.9	168293151.4	168.3	0.37
Q3 2015	21586.9	3.8	3760	81706.4	307216126.0	307.2	0.7	3584.4	9.6	9610	13567.0	130378427.9	130.4	0.3
Q4 2015	21769.8	5.18	5180	82398.7	426825229.7	426.8	0.94	4110.3	7.50	7500	15557.5	116681141.3	116.7	0.26
Q1 2016	20944.6	5.30	5300	79275.3	420159148.3	420.2	0.93	3676.2	7.13	7130	13914.4	99209793.2	99.2	0.22
Q2 2016	20624.0	6.67	6670	78061.8	520672472.8	520.7	1.15	3760.4	7.81	7810	14233.1	111160620.3	111.2	0.25
Q3 2016	17487.4	4.07	4070	66189.8	269392522.6	269.4	0.59	2953.8	8.83	8830	11180.1	98720574.4	98.7	0.22
Q4 2016	19740.6	6.07	6070	74718.2	453539298.0	453.5	1.00	3050.2	8.92	8920	11545.0	102981462.4	103.0	0.23
Q1 2017	19869.7	4.74	4740	75206.8	356480300.7	356.5	0.79	2984.2	8.12	8120	11295.2	91716999.6	91.7	0.20
Q2 2017	18716.7	4.90	4900	70842.7	347129276.6	347.1	0.77	2845.9	7.92	7920	10771.7	85312113.5	85.3	0.19
Q3 2017	19338.8	5.08	5080	73197.4	371842578.6	371.8	0.82	2830.0	7.78	7780	10711.6	83335859.0	83.3	0.18
Q4 2017	17327.6	3.28	3280	65585.0	215118688.5	215.1	0.47	2612.7	7.79	7790	9889.1	77035851.4	77.0	0.17
Q1 2018	16232,3	2.94	2940	61439.3	180631411.2	180.6	0.40	2571.0	7.89	7890	9731.2	76779444.2	76.8	0.17
Q2 2018	16051.4	3.50	3500	60754.5	212640921.5	212.6	0.47	2513.5	7.51	7510	9513.6	71447117.2	71.4	0.16
Q3 2018	14927.2	4.83	4830	56499.5	272892353.2	272.9	0.60	2170.2	7.15	7150	8214.2	58731580.1	58.7	0.13
Q4 2018	15464.1	3.52	3520	58531.6	206031297.1	206.0	0.45	2379.5	6.85	6850	9006.4	61693891.4	61.7	0.14
Q1 2019	16169.9	3.92	3920	61203.1	239916040.3	239.9	0.53	2342.4	7.50	7500	8866.0	66494880.0	66.5	0.15
Q2 2019	13893.7	4.38	4380	52587.7	230333926.7	230.3	0.51	2195.1	8.30	8300	8308.5	68960164.1	69.0	0.15
Q3 2019	14106.9	4.79	4790	53394.6	255760213.0	255.8	0.56	2046.0	7.15	7150	7744.1	55370386.5	55.4	0.12
Q4 2019	14220.9	3.40	3400	53826.1	183008762.1	183.0	0.40	1983.9	7.14	7140	7509.1	53614699.1	53.6	0.12
Q1 2020	13162.1	6.07	6070	49818.5	302398589.4	302.4	0.67	1947.4	7.07	7070	7370.9	52112326.6	52.1	0.11

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

1		9-19-19		TW4-02				TW4-11							
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	
Q2 2020	14155.6	3.62	3620	53578.9	193955784.5	194.0	0.43	2003.9	7.56	7560	7584.8	57340796.9	57.3	0.13	
Q3 2020	14009.5	3.35	3350	53026.0	177636957.6	177.6	0.39	1784.1	7.59	7590	6752.8	51253892.4	51.3	0.11	
Q4 2020	14582.9	2.34	2340	55196.3	129159287.0	129.2	0.28	1394.6	7.19	7190	5278.6	37952853.6	38.0	0.08	
Q1 2021	13189.6	3.30	3300	49922.6	164744698.8	164.7	0.36	2195.1	7.21	7210	8308.5	59904495.5	59.9	0.13	
Q2 2021	11975.9	3.89	3890	45328.8	176328960.0	176.3	0.39	1694.5	8.17	8170	6413.7	52399786.0	52.4	0.12	
Q3 2021	12694.5	1.97	1970	48048.7	94655904.5	94.7	0.21	1560.8	5.78	5780	5907.5	34145214.7	34.1	0.08	

Q3 2010 458429.20

16.7 78332.08

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	TW4-21							PS - Stand	C 1 209112	- Marine Carloy	TW4-37		1	111111
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Totai (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2015	30743.7	13.1	13100	116364.9	1524380249.0	1524.4	3.4	29206.0	35.2	35200	110544.7	3891173792.0	3891.2	8.6
Q3 2015	125285.4	14.7	14700	474205.2	6970817013.3	6970.8	15.4	118063.9	32.4	32400	446871.9	14478648312.6	14478.6	31.9
Q4 2015	134774.9	14.30	14300	510123.0	7294758850.0	7294.8	16.08	111737.5	34.60	34600	422926.4	14633254737.5	14633.3	32.26
Q1 2016	125513.3	14.60	14600	475067.8	6935990471.3	6936.0	15.29	111591.0	28.40	28400	422371.9	11995362954.0	11995.4	26.45
Q2 2016	132248.7	13.10	13100	500561.3	6557353416.5	6557.4	14.46	119241.2	27.90	27900	451327.9	12592049581.8	12592.0	27.76
Q3 2016	110381.9	16.50	16500	417795.5	6893625609.8	6893.6	15,20	98377.6	33.40	33400	372359.2	12436797814.4	12436.8	27.42
Q4 2016	130311.3	13.50	13500	493228.3	6658581651.8	6658.6	14.68	101949.1	26.10	26100	385877.3	10071398665.4	10071.4	22.20
Q1 2017	54333.5	17.70	17700	205652,3	3640045665.8	3640.0	8.02	97071.7	32.30	32300	367416.4	11867549219.4	11867.5	26.16
Q2 2017	60969.7	9.53	9530	230770.3	2199241097.2	2199.2	4.85	93191.3	31.20	31200	352729.1	11005146999.6	11005.1	24.26
Q3 2017	120116.2	18.2	18200	454639.8	8274444669.4	8274.4	18.24	81749.3	30.5	30500	309421.1	9437343565.3	9437.3	20.81
Q4 2017	126492.5	16.9	16900	478774.1	8091282501.3	8091.3	17.84	87529.6	30.6	30600	331299.5	10137765801.6	10137.8	22.35
Q1 2018	117832.0	15.8	15800	445994.1	7046707096.0	7046.7	15.54	84769.3	30.0	30000	320851.8	9625554015.0	9625.6	21.22
Q2 2018	116681.0	14.1	14100	441637.6	6227089948.5	6227.1	13.73	83653.1	28.6	28600	316627.0	9055531728.1	9055.5	19.96
Q3 2018	110001.4	0.236	236	416355.3	98259850.6	98.3	0.22	77457.8	25.4	25400	293177.8	7446715434.2	7446.7	16.42
Q4 2018	121686.3	15.2	15200	460582.6	7000856211.6	7000.9	15.43	76271.4	27.3	27300	288687.2	7881161897.7	7881.2	17.38
Q1 2019	123264.1	8.99	8990	466554.5	4194325339.8	4194.3	9.25	77591.4	30.1	30100	293683.4	8839871814.9	8839.9	19.49
Q2 2019	106893.6	17.5	17500	404592.3	7080364830.0	7080.4	15.61	64950.1	31.2	31200	245836.1	7670087209.2	7670.1	16.91
Q3 2019	108132.9	14.7	14700	409283.0	6016460489.6	6016.5	13.26	67572.0	25.8	25800	255760.0	6598608516.0	6598.6	14.55
Q4 2019	116167.6	5.73	5730	439694.2	2519447632.8	2519.4	5.55	66732.4	25.5	25500	252582.1	6440844417.0	6440.8	14.20
Q1 2020	106622.0	8.93	8930	403564.3	3603829269.1	3603.8	7.95	65554.2	28.3	28300	248122.6	7021870910.1	7021.9	15.48

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	TW4-21							and the second	BAR TO	10.14	TW4-37	200 Cons		- INST -
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	110999.1	15.4	15400	420131.7	6470028288.6	6470.0	14.26	65163.8	28.3	28300	246645.0	6980053018.9	6980.1	15.39
Q3 2020	99515.1	12.6	12600	376664.7	4745975111.0	4746.0	10.46	56659.3	29.5	29500	214455.5	6326435789.8	6326.4	13.95
Q4 2020	107061.2	16.3	16300	405226.5	6605191796.8	6605.2	14.56	61323.9	28.7	28700	232111.0	6661584595.1	6661.6	14.69
Q1 2021	97211.5	15.2	15200	367945.5	5592771442.7	5592.8	12.33	59907.4	26.9	26900	226749.5	6099561792.1	6099.6	13.45
Q2 2021	97157.6	21.5	21500	367741.5	7906442594.0	7906.4	17.43	58564.2	26.6	26600	221665.5	5896302220.2	5896.3	13.00
Q3 2021	93390.4	12.9	12900	353482.7	4559926365.6	4559.9	10.05	49987.5	25.8	25800	189202.7	4881429337.5	4881.4	10.76

Q3 2010 2783786.8

319.0 2065866.0

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	TW4-39									1220	TW4-4	0	Station 2004	COLETE DE
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2016	3589.3	20.70	20700	13585.5	281219860.4	281.2	0.62	NA	NA	NA	NA	NA	NA	NA
Q1 2017	103117.8	6.44	6440	390300.9	2513537622.1	2513.5	5.54	NA	NA	NA	NA	NA	NA	NA
Q2 2017	41313.0	6.25	6250	156369.7	977310656.3	977.3	2.15	NA	NA	NA	NA	NA	NA	NA
Q3 2017	34546.3	7.74	7740	130757.7	1012064950.2	1012.1	2.23	NA	NA	NA	NA	NA	NA	NA
Q4 2017	68180.2	2.65	2650	258062.1	683864451.1	683.9	1.51	NA	NA	NA	NA	NA	NA	NA
Q1 2018	59262.2	3.33	3330	224307.4	746943731.9	746.9	1.65	NA	NA	NA	NA	NA	NA	NA
Q2 2018	34259.8	4.84	4840	129673.3	627618980.1	627.6	1.38	NA	NA	NA	NA	NA	NA	NA
Q3 2018	33473.4	6.05	6050	126696.8	766515755.0	766.5	1.69	NA	NA	NA	NA	NA	NA	NA
Q4 2018	37003.6	6.39	6390	140058.6	894974620.1	895.0	1.97	NA	NA	NA	NA	NA	NA	NA
Q1 2019	49116.9	2.08	2080	185907.5	386687530.3	386.7	0.85	NA	NA	NA	NA	NA	NA	NA
Q2 2019	34285.7	8.45	8450	129771.4	1096568114.5	1096.6	2.42	81762.8	3.55	3550.0	309472,2	1098626302.9	1098.6	2.4
Q3 2019	36976.2	1.75	1750	139954.9	244921104.8	244.9	0.54	116414.2	3.39	3390.0	440627.7	1493728062.3	1493.7	3.3
Q4 2019	51808.6	0.948	948	196095.6	185898582.3	185.9	0.41	108281.9	2.89	2890.0	409847.0	1184457696.0	1184.5	2,6
Q1 2020	43169.3	0.792	792	163395.8	129409474.0	129.4	0.29	102021.5	2.98	2980.0	386151.4	1150731217.7	1150.7	2.5

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-39		R. Constant				AND A REAL T	TW4-4	0		1000
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	37352.7	5.01	5010	141380.0	708313647.2	708.3	1.56	100757.1	2.91	2910.0	381365.7	1109774294.8	1109.8	2.4
Q3 2020	35628.2	2.69	2690	134852.7	362753862.5	362.8	0.80	86264.5	2.88	2880.0	326511.1	940352061.6	940.4	2.1
Q4 2020	46794.2	7.03	7030	177116.0	1245125810.4	1245.1	2.75	77535.9	2.58	2580.0	293473.5	757161617.2	757.2	1.7
Q1 2021	38932.4	2.12	2120	147359.1	312401364.1	312.4	0.69	72543.4	2.43	2430.0	274576.7	667221272.7	667.2	1.5
Q2 2021	32865.2	12.0	12000	124394.8	1492737384.0	1492.7	3.29	66866.4	3.77	3770.0	253089.3	954146751.5	954.1	2.1
Q3 2021	31436.6	2.70	2700	118987.5	321266333.7	321.3	0.71	58841.0	1.50	1500.0	222713.1	334069664.0	334.1	0.7

Q3 2010 853111.60

33.0 871288.7

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-41	T an at	Ebox		
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Hemoved by All Wells
Q3 2010	NA	NA	NA	NA	NA	NA	NA	15.69
Q4 2010	NA	NA	NA	NA	NA	NA	NA	27.97
Q1 2011	NA	NA	NA	NA	NA	NA	NA	73.30
Q2 2011	NA	NA	NA	NA	NA	NA	NA	27.01
Q3 2011	NA	NA	NA	NA	NA	NA	NA	16.82
Q4 2011	NA	NA	NA	NA	NA	NA	NA	19.71
Q1 2012	NA	NA	NA	NA	NA	NA	NA	15.86
Q2 2012	NA	NA	NA	NA	NA	NA	NA	15.03
Q3 2012	NA	NA	NA	NA	NA	NA	NA	14.67
Q4 2012	NA	NA	NA	NA	NA	NA	NA	14.92
Q1 2013	NA	NA	NA	NA	NA	NA	NA	95.73
Q2 2013	NA	NA	NA	NA	NA	NA	NA	91.71
Q3 2013	NA	NA	NA	NA	NA	NA	NA	176.53
Q4 2013	NA	NA	NA	NA	NA	NA	NA	162.07
Q1 2014	NA	NA	NA	NA	NA	NA	NA	103.14
Q2 2014	NA	NA	NA	NA	NA	NA	NA	101.87
Q3 2014	NA	NA	NA	NA	NA	NA	NA	92.99
Q4 2014	NA	NA	NA	NA	NA	NA	NA	108.57
Q1 2015	NA	NA	NA	NA	NA	NA	NA	82.61
Q2 2015	NA	NA	NA	NA	NA	NA	NA	68.86
Q3 2015	NA	NA	NA	NA	NA	NA	NA	118.63
Q4 2015	NA	NA	NA	NA	NA	NA	NA	124.50
Q1 2016	NA	NA	NA	NA	NA	NA	NA	132.55
Q2 2016	NA	NA	NA	NA	NA	NA	NA	99.98
Q3 2016	NA	NA	NA	NA	NA	NA	NA	101.12
Q4 2016	NA	NA	NA	NA	NA	NA	NA	106.06
Q1 2017	NA	NA	NA	NA	NA	NA	NA	116.19
Q2 2017	NA	NA	NA	NA	NA	NA	NA	80.12
Q3 2017	NA	NA	NA	NA	NA	NA	NA	93.37
Q4 2017	NA	NA	NA	NA	NA	NA	NA	106.21
Q1 2018	NA	NA	NA	NA	NA	NA	NA	111.99
Q2 2018	73711.2	6.54	6540	278996.9	1824639673.7	1824.6	4.02	84.14
Q3 2018	44981.6	6.13	6130	170255.2	1043664404.2	1043.7	2.30	61.86
Q4 2018	35431.5	6.02	6020	134108.2	807331529.6	807.3	1.78	98.49
Q1 2019	31903.6	6.71	6710	120755.1	810266895.5	810.3	1.79	101.08
Q2 2019	25146.5	6.00	6000	95179.5	571077015.0	571.1	1.26	101.72
Q3 2019	24045.6	6.22	6220	91012.6	566098347.1	566.1	1.25	80.19
Q4 2019	21186.4	6.11	6110	80190.5	489964101.6	490.0	1.08	76.97
Q1 2020	17289.9	6.12	6120	65442.3	400506701.6	400.5	0.88	86.86

100

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		A CHILL	FRIM	TW4-41	and the second	HAR BELLE	Long Frank	1215.12
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Removed by All Wells
Q2 2020	17294.9	6.78	6780	65461.1	443826399.0	443.8	0.98	85.95
Q3 2020	13411.4	6.69	6690	50762.3	339599536.5	339.6	0.75	81.69
Q4 2020	17765.7	6.25	6250	67243.3	420270313.8	420.3	0.93	89.15
Q1 2021	13407.5	6.41	6410	50747.3	325290026.0	325.3	0.72	88.22
Q2 2021	13168.7	7.45	7450	49843.5	371334294.8	371.3	0.82	91.09
Q3 2021	13821.0	3.77	3770	52312.4	197217640.4	197.2	0.43	64.14

Q3 2010 362565.43

19.0 3707.30

10

Table 5Nitrate Date Over Time for MW-30, MW-31, MW-5, and MW-11

Date	MW-30	MW-31	MW-5	MW-11
Q2 2010	15.8	22.5	ND	ND
Q3 2010	15	21	NS	ND
Q4 2010	16	20	0.2	ND
Q1 2011	16	21	NS	ND
Q2 2011	17	22	0.2	ND
Q3 2011	16	21	NS	ND
Q4 2011	16	21	0.2	ND
Q1 2012	17	21	NS	ND
Q2 2012	16	20	0.1	ND
Q3 2012	17	21	NS	ND
Q4 2012	18.5	23.6	ND	ND
Q1 2013	21.4	19.3	NS	ND
Q2 2013	18.8	23.8	ND	ND
Q3 2013	17.6	21.7	NS	ND
Q4 2013	19.5	23.9	0.279	ND
Q1 2014	18.4	20.6	NS	ND
Q2 2014	19.4	23.1	ND	ND
Q3 2014	16.8	18.9	NS	ND
Q4 2014	16.2	20.9	0.21	ND
Q1 2015	14.9	18.7	NS	ND
Q2 2015	17.0	19.0	0.142	ND
Q3 2015	17.9	19.9	NS	ND
Q4 2015	16.3	18.4	0.118	ND
Q1 2016	20.0	18.8	NS	ND
Q2 2016	17.3	18.6	0.156	0.117
Q3 2016	18.0	19.7	NS	ND
Q4 2016	17.2	18.8	0.241	ND
Q1 2017	17.4	21.1	NS	ND
Q2 2017	17.5	18.3	0.133	ND
Q3 2017	19.2	19.5	NS	ND
Q4 2017	17.4	19.2	0.337	ND
Q1 2018	17.6	18.8	NS	ND
Q2 2018	17.3	19.0	0.216	ND
Q3 2018	18.0	20.1	NS	ND
Q4 2018	17.3	18.3	0.309	ND
Q1 2019	17.9	19.0	NS	ND
Q2 2019	18.5	19.7	0.260	ND
Q3 2019	19.3	19.8	NS	0.558
Q4 2019	18.2	19.8	0.235	0.160
Q1 2020	16.4	17.5	NS	0.308
Q2 2020	18.1	18.8	0.142	0.297
Q3 2020	18.4	19.2	NS	0.651
Q4 2020	16.8	18.6	0.191	0.933
Q1 2021	17.7	17.1	NS	1.21
Q2 2021	17.7	18.6	<0.100	0.948
Q3 2021	20.6	18.7	NS	0.924

ND = Not detected

NS = Not Sampled

TABLE 6Slug Test Results(Using KGS Solution and Automatically Logged Data)

Well	K (cm/s)	K (ft/day)
MW-30	1.0E-04	0.28
MW-31	7.1E-05	0.20
TW4-22	1.3E-04	0.36
TW4-24	1.6E-04	0.45
TW4-25	5.8E-05	0.16
TWN-2	1.5E-05	0.042
TWN-3	8.6E-06	0.024
	Average 1	0.22
	Average 2	0.15
	Average 3	0.32
	Average 4	0.31

Notes:

Average 1 = arithemetic average of all wells

Average 2 = geometric average of all wells

Average 3 = arithemetic average of MW-30, MW-31, TW4-22, and TW4-24

Average 4 = geometric average of MW-30, MW-31, TW4-22, and TW4-24

cm/s = centimeters per second

ft/day = feet per day

K = hydraulic conductivity

KGS = KGS Unconfined Slug Test Solution in AqtesolveTM.

TABLE 7 Pre-Pumping Saturated Thicknesses

Well	Depth to Brushy Basin (ft)	Depth to Water Fourth Quarter, 2012 (ft)	Saturated Thickness Above Brushy Basin (ft)
TW4-22	112	53	58
TW4-24	110	55	55

Notes:

ft = feet

TABLE 8 Pre-Pumping Hydraulic Gradients and Flow Calculations

Pathline Boundaries	Path Length	Head Change	Hydraulic Gradient
Pathine Boundaries	(ft)	(ft)	(ft/ft)
TW4-25 to MW-31	2060	48	0.023
TWN-2 to MW-30	2450	67	0.027
		average	0.025
		¹ min flow (gpm)	1.31
		² max flow (gpm)	2.79

Notes:

ft = feet

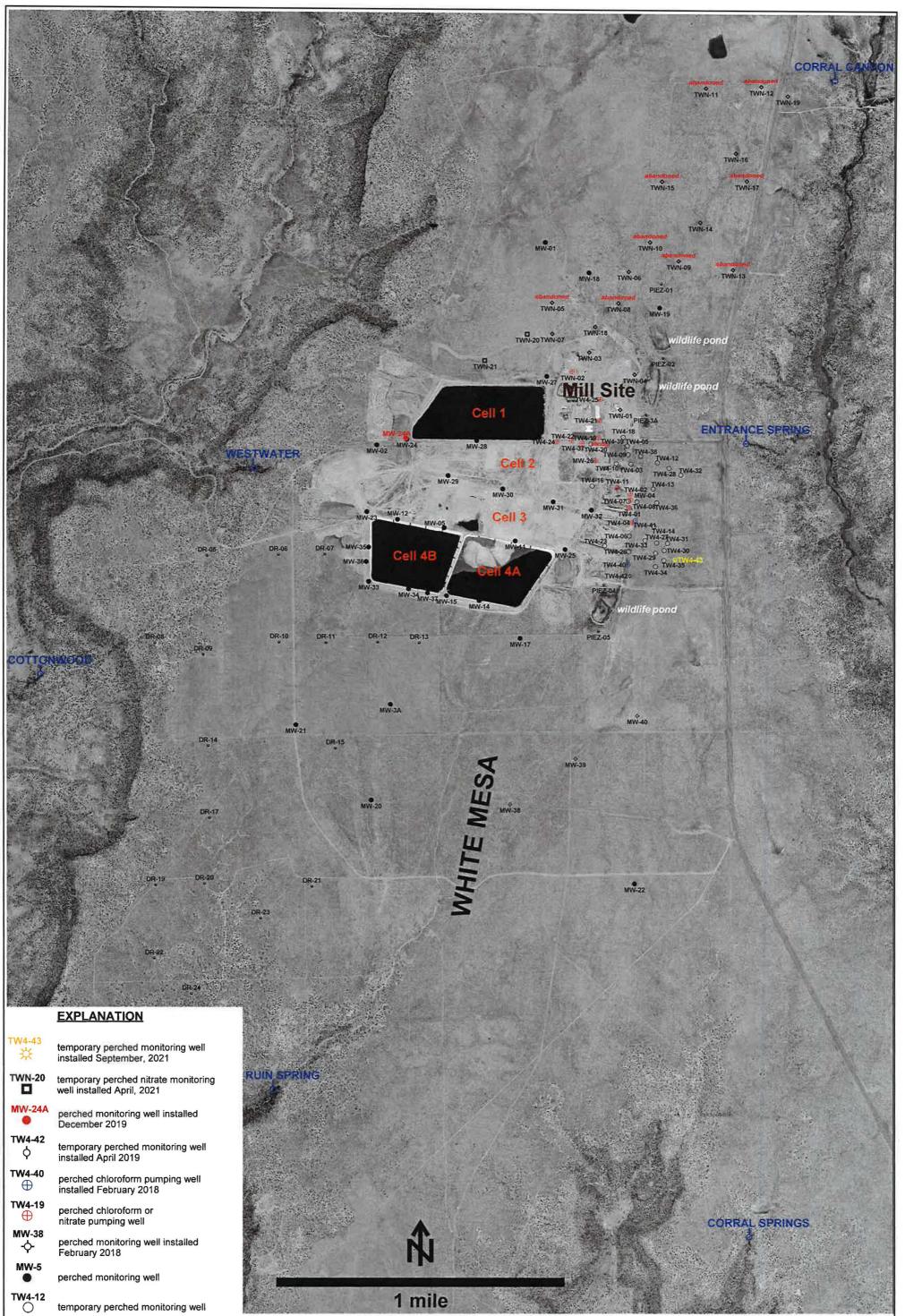
ft/ft = feet per foot

gpm = gallons per minute

¹ assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.15 ft/day; and gradient = 0.025 ft/ft

 2 assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.32 ft/day; and gradient = 0.025 ft/ft

Table 9 *Recalculated Background Flow

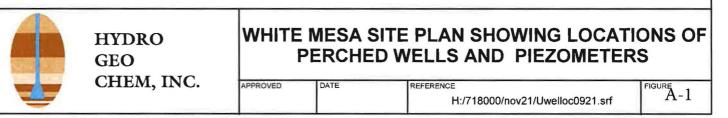

	Background Flow (gpm)	*Recalculated Background Flow (gpm)
minimum	1.31	0.79
maximum	2.79	1.67

* recalculated based on reduced widlife pond recharge as presented in the third quarter, 2015 Nitrate Monitoring Report

gpm = gallons per minute

Tab A

Site Plan and Perched Well Locations White Mesa Site


TWN-7

temporary perched nitrate monitoring well

PIEZ-1 perched piezometer

RUIN SPRING

9 seep or spring

Tab B

Order of Sampling and Field Data Worksheets

Nitrate Order 3rd Quarter 2021

1	Nitrate	Nitrate	Samples		
Name	Mg/L Previous Qrt.	Date/Purge	sample	Depth	Total Depth
TWN-18	0.22	8/17/21	0917	1	145
TWN-21	1.03	8/19/21	0855		108.65
TWN-04	1.7	8/18/21	0919		125.7
TWN-20	1.88	8/19/21	0905		98.2
TWN-01	3.18	8/18/21	1016		112.5
TWN-02	13.8	8/18/21	1025		96
TWN-07	16.40	8/19/21	0915		105
TWN-03	25.0	8/19/21	0922		96

Rinsate Samples						
Name	Date	Sample				
N-18R	8/17/21	0845				

6

 Samplers:	lanner	Holliday

0917 8/17/21 Duplicate of 8/18/21 60 0715 DI Sample 8/19/21 0935 Plez-02 ND 0948 Piez-01 7.89 8/19/21 8/19/21 1012 Piez -03A 14.4

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	PIEZ-01		
Field Sample ID	Piez-01_08192021		
Purge Date & Time	8/19/2021 9:45		
Sample Date & Time	8/19/2021 9:48		

Purging Equipment	Bailer
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Nitrate Quarterly			
2021 Q3 Nitrate			
TH/DL			
Cloudy			
18	_		
Piez-02			
	2021 Q3 Nitrate TH/DL Cloudy 18		

107.50		
1		
67.13		
	1	

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/19/2021 9:48		2309	7.26	15.75	499	101.0	68.0	

Volume of water purged ()	
Final Depth to Water (feet)	68.05

Pumping	Rate Ca	lculations
---------	---------	------------

Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Name of Certified Analytical Laboratory
AWSL

Analytical Samples Information

	Sample		Co	ntainer		Preserva	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0941. Samples bailed and collected at 0948. Water was murky. Left site at 0958.

Darner Holliday

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	PIEZ-02	
Field Sample ID	Piez-02_08192021	
Purge Date & Time	8/19/2021 9:29	
Sample Date & Time	8/19/2021 9:35	

Purging Equipment	Bailer
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly	
Sampling Event	2021 Q3 Nitrate	
Sampler	TH/DL	
Weather Conditions	Cloudy	
External Ambient Temperature (C)	18	
Previous Well Sampled	TWN-03	

Well Depth (ft)	100.00	
Well Casing Diameter (in)	1	
Depth to Water Before Purging (ft)	46.03	

		Conductivity					Dissolved	
Date/Time	Gallons Purged	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
8/19/2021 9:34		926.0	7.40	15.64	494	1.5	22.3	

Volume of water purged ()		
Final Depth to Water (feet)	46.98	

	Analytical Laboratory
AWSL	

Analytical Samples Information

	Sample		Co	ontainer		Preserva	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0929. Samples bailed and collected at 0935. Water was clear. Left site at 0939.

Durner Holliday

o Water (feet)	46.98

Pumping	Rate	Calculations

Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	PIEZ-03A	
Field Sample ID	Piez-03A_08192021	
Purge Date & Time	8/19/2021 10:05	
Sample Date & Time	8/19/2021 10:12	

Purging Equipment	Bailer
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly
Sampling Event	2021 Q3 Nitrate
Sampler	TH/DL
Weather Conditions	Cloudy
External Ambient Temperature (C)	18
Previous Well Sampled	Piez-01

Well Depth (ft)	79.00		
Well Casing Diameter (in)	1		
Depth to Water Before Purging (ft)	57.13		

		Conductivity					Dissolved	
Date/Time	Gallons Purged	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
8/19/2021 10:12		1173	7.33	15.92	489	10.4	100.0	

Volume of water purged ()	
Final Depth to Water (feet)	58.45

Pumping	Rate	Calcu	lations
---------	------	-------	---------

Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Name of Certified Analyti	cal Laboratory
AWSL	

Analytical Samples Information

	Sample		Co	ontainer		Preserva	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 1004. Samples bailed and collected at 1012. Water was a little murky. Left site at 1016.

Durne Holling

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-01
Field Sample ID	TWN-01_08182021
Purge Date & Time	8/18/2021 10:11
Sample Date & Time	8/18/2021 10:16

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	24.16
Calculated Casing Volumes Purge Duration (min)	4.39
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly
Sampling Event	2021 Q3 Nitrate
Sampler	TH/DL

Weather Conditions	Partly cloudy		
External Ambient Temperature (C)	22		
Previous Well Sampled	TWN-20		

Well Depth (ft)	106.13		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	69.13		

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/18/2021 10:13	22.00	917.0	7.10	15.78	507	2.1	41.5	
8/18/2021 10:14	33.00	915.0	7.14	15.74	505	1.9	43.1	
8/18/2021 10:15	44.00	907.0	7.18	15.71	504	2.0	44.0	
8/18/2021 10:16	55.00	901.0	7.20	15.65	502	2.0	45.0	

Volume of water purged (gals)	55.00
Final Depth to Water (feet)	101.35

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	5.00
Number of casing Volumes	2.00
Volume, if well evacuated to dryness ()	0

Name of Certified Analytical La	boratory
AWSL	

Analytical Samples Information

	Sample	Sample		Container		Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 1007. Purge began at 1011. Purged well for a total of 5 minutes. Purge ended and samples collected at 1016. Water was clear. Left site at 1019.

Durrez Holliday

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-02
Field Sample ID	TWN-02_08182021
Purge Date & Time	8/18/2021 10:24
Sample Date & Time	8/18/2021 10:25

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	11.70
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly			
Sampling Event	2021 Q3 Nitrate			
Sampler	TH/DL			
Weather Conditions	Partly cloudy			
External Ambient Temperature (C)	22			
Previous Well Sampled	TWN-01			

Well Depth (ft)	95.90		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	77.97		

16.00

0

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/18/2021 10:25		2027	7.00	16.55	495	0	93.0	

Time to evacuate 2 Casing Volumes ()

Volume, if well evacuated to dryness ()

Pumping Rate Calculations Flow Rate (Q = S/60) (gal/min)

Number of casing Volumes

Volume of water purged ()	

Final Depth to Water (feet)

Name of Certified Analytica	I Laboratory
AWSL	

Analytical Samples Information

	Sample		Container			Preserva	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 1021. Samples collected at 1025. Water was clear. Left site at 1027.

87.28

Durner Holliday

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-03
Field Sample ID	TWN-03_08192021
Purge Date & Time	8/18/2021 12:10
Sample Date & Time	8/19/2021 9:22

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	34.81
Calculated Casing Volumes Purge Duration (min)	6.33
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly	
Sampling Event	2021 Q3 Nitrate	

Sampler	TH/DL

Weather Conditions	Partly cloudy	
External Ambient Temperature (C)	23	
Previous Well Sampled	TWN-07	

Well Depth (ft)	96.00	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	42.68	

		Conductivity					Dissolved	
Date/Time	Gallons Purged (gal)	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
8/18/2021 12:14	44.00	2355	7.09	15.42	493	2.6	37.3	
8/19/2021 9:22		2287	7.34	15.33				Before
8/19/2021 9:23		2278	7.31	15.37				After

Volume of water purged (gals)	44.00
Final Depth to Water (feet)	93.54

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	4.00
Number of casing Volumes	1.26
Volume, if well evacuated to dryness (gals)	44.00

Name of Certified Analytical Laboratory
AWSL

Analytical Samples Information

	Sample		Container			Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 1207. Purge began at 1210. Purged well for a total of 4 minutes. Purged well dry. Purge ended at 1214. Water was clear. Left site at 1217. Arrived on site at 0919. Depth to water was 43.55. Samples bailed and collected at 0922. Left site at 0924.

Signature of Field Technician

Durner Holliday

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-04
Field Sample ID	TWN-04_08182021
Purge Date & Time	8/18/2021 9:09
Sample Date & Time	8/18/2021 9:19

Purging Equipment	Pump	
Pump Type	Grundfos	
Purging Method	2 Casings	
Casing Volume (gal)	42.00	
Calculated Casing Volumes Purge Duration (min)	7.63	
pH Buffer 7.0	7.0	
pH Buffer 4.0	4.0	
Specific Conductance (micromhos)	1000	

Sampling Program	Nitrate Quarterly		
Sampling Event	2021 Q3 Nitrate		
Sampler	TH/DL		
Weather Conditions	Partly cloudy		

Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan

Weather Conditions	22 TWN-21		
External Ambient Temperature (C)			
Previous Well Sampled			

Well Depth (ft)	126.40		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	62.08		

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/18/2021 9:16	77.00	1048	7.05	14.91	522	0	74.1	
8/18/2021 9:17	88.00	1045	7.08	14.93	521	0	72.8	
8/18/2021 9:18	99.00	1042	7.11	14.93	520	0	71.8	
8/18/2021 9:19	110.00	1040	7.13	14.91	520	0	71.1	

Volume of water purged (gals)	110.00		
Final Depth to Water (feet)	65.31		

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00		
Time to evacuate 2 Casing Volumes (min)	10.00		
Number of casing Volumes	2.00		
Volume, if well evacuated to dryness ()	0		

Name of Certified An	alytical Laboratory
AWSL	

Analytical Samples Information

	Sample	Sample		Container		Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0905. Purge began at 0909. Purged well for a total of 10 minutes. Purge ended and samples collected at 0919. Water was clear. Left site at 0922.

Danner Holliday

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-07
Field Sample ID	TWN-07_08192021
Purge Date & Time	8/18/2021 10:56
Sample Date & Time	8/19/2021 9:13

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	17.49
Calculated Casing Volumes Purge Duration (min)	3.18
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Q3 Nitrate
TH/DL

Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan

Weather Conditions	Partly cloudy		Partly cloudy	
External Ambient Temperature (C)	23			
Previous Well Sampled	TWN-02			

Well Depth (ft)	107.20	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	80.41	

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/18/2021 10:58	19.25	1837	7.35	15.70	481	1.0	87.0	
8/19/2021 9:13		1896	7.47	15.56				Before
8/19/2021 9:14		1894	7.47	15.54				After

Volume of water purged (gals)	19.25
-------------------------------	-------

Final Depth to Water (feet)	105.05
-----------------------------	--------

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate ($Q = S/60$) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	1.75
Number of casing Volumes	1.10
Volume, if well evacuated to dryness (gals)	19.25

Analytical Samples Information

	Sample		Co	ntainer		Preser	vative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 1052. Purge began at 1056. Purged well for a total of 1 minute and 45 seconds. Purged well dry. Purge ended at 1058. Water was clear. Left site at 1101. Arrived on site at 0909. Depth to water was 91.05. Samples bailed and collected at 0913. Left site at 0915.

Signature of Field Technician

Durner Holliday

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-18
Field Sample ID	TWN-18_08172021
Purge Date & Time	8/17/2021 9:05
Sample Date & Time	8/17/2021 9:17

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	55.27
Calculated Casing Volumes Purge Duration (min)	10.05
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly		
Sampling Event	2021 Q3 Nitrate		
Sampler	TH/DL		
Weather Conditions	Sunny		
External Ambient Temperature (C)	21		
Previous Well Sampled	TWN-18R		

Well Depth (ft)	147.00	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	62.35	

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/17/2021 9:14	99.00	2777	6.89	14.67	492	4.5	2.0	
8/17/2021 9:15	110.00	2777	6.88	14.66	492	4.4	1.9	
8/17/2021 9:16	121.00	2775	6.89	14.67	491	4.4	2.0	
8/17/2021 9:17	132.00	2775	6.88	14.67	491	4.3	2.0	

Volume of water purged (gals)	132.00
Final Depth to Water (feet)	63.75

Name of Certified Analytical Laboratory
AWSL

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	12.00
Number of casing Volumes	2.00
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Со	ntainer		Preser	vative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0901. Purge began at 0905. Purged well for a total of 12 minutes. Purge ended and samples collected at 0917. Water was clear. Left site at 0920.

Signature of Field Technician

Jannes Holling

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-18R
Field Sample ID	TWN-18R_08172021
Purge Date & Time	
Sample Date & Time	8/17/2021 8:45

Purging Equipment	
Pump Type	
Purging Method	
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	
pH Buffer 4.0	
Specific Conductance ()	

Sampling Program		
Sampling Event	2021 Q3 Nitrate	
Sampler	TH/DL	
Weather Conditions		
External Ambient Temperature ()		
Previous Well Sampled		

Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan

Well Depth (ft)	
Well Casing Diameter ()	
Depth to Water Before Purging (ft)	

		Conductivity					Dissolved	
Date/Time	Gallons Purged (gal)	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
8/17/2021 8:44	11.00	3.0	7.96	23.87	445	0	47.0	

Volume of water purged ()	
---------------------------	--

Final Depth to Water (feet)

Name of Certified Analytical La	boratory
AWSL	

Pumping Rate Calculations

Flow Rate ($Q = S/60$) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	

Analytical Samples Information

	Sample		Co	ntainer		Preserva	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Durner Holliday

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-20
Field Sample ID	TWN-20_08192021
Purge Date & Time	8/18/2021 9:44
Sample Date & Time	8/19/2021 9:05

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	13.28
Calculated Casing Volumes Purge Duration (min)	2.41
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Nitrate Quarterly
2021 Q3 Nitrate
TH/DL

Weather Conditions	Partly cloudy	
External Ambient Temperature (C)	22	
Previous Well Sampled	TWN-04	

Well Depth (ft)	98.20	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	77.85	

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/18/2021 9:45	13.75	3161	6.87	15.87	525	5.3	17.4	
8/19/2021 9:05		3253	7.30	16.11				Before
8/19/2021 9:06		3250	7.28	16.10				After

Volume of water purged (gals)	13.75
-------------------------------	-------

Final Depth to Water (feet)	96.03
-----------------------------	-------

Name of Certified Analytical I	aboratory
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	1.25
Number of casing Volumes	0.96
Volume, if well evacuated to dryness (gals)	13.25

Analytical Samples Information

Sa			Container			Preserva	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0940. Purge began at 0944. Purged well for a total of 1 minute and 15 minutes. Purged well dry. Purge ended at 0945. Water was clear. Left site at 0948. Arrived on site at 0901. Depth to water was 78.04. Samples bailed and collected at 0905. Left site at 0908.

Durnez Holliday

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-21
Field Sample ID	TWN-21_08192021
Purge Date & Time	8/18/2021 8:39
Sample Date & Time	8/19/2021 8:55

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	19.30
Calculated Casing Volumes Purge Duration (min)	3.51
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly		
Sampling Event	2021 Q3 Nitrate		
Sampler	TH/DL		
Weather Conditions	Partly cloudy		
External Ambient Temperature (C)	21		
Previous Well Sampled	TWN-60		

Well Depth (ft)	108.65	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	79.08	

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/18/2021 8:41	22.00	3770	6.70	15.55	563	6.0	104.0	
8/19/2021 8:55		3692	7.38	16.19				Before
8/19/2021 8:56		3700	7.35	16.15				After

Volume of water purged (gals)	22.00
Final Depth to Water (feet)	106.88

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	2.00
Number of casing Volumes	1.13
Volume, if well evacuated to dryness (gals)	22.00

Name of Certified Analytical Laboratory AWSL	
AWSL	

Analytical Samples Information

	Sample		Со	ntainer		Preserva	ative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0835. Purge began at 0839. Purged well for a total of 2 minutes. Purged well dry. Water was clear. Purge ended at 0841. Left site at 0844. Arrived on site at 0851. Depth to water was 79.23. Samples bailed and collected at 0855. Left site at 0858.

Durner Holliday

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TW4-22		
Field Sample ID	TW4-22_08242021		
Purge Date & Time	8/24/2021 9:34		
Sample Date & Time	8/24/2021 9:35		

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	28.65
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring
Sampling Event	2021 Q3 Chloroform
Sampler	TH/DL
Weather Conditions	Sunny
External Ambient Temperature (C)	23

Well Depth (ft)	114.70	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	70.82	

		Conductivity					Dissolved	
Date/Time	Gallons Purged	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
8/24/2021 9:35		5379	6.94	16.64	451	2.0	87.0	

Volume of water purged ()	

Name of Certified Analytic	al Laboratory
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	16.00
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Co	ontainer		Preservat	tive
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Y	WATER	3	40ml VOA	U	HCI (pH<2), 4 Deg C	Y
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0931. Samples collected at 0935. Water was clear. Left site at 0937.

Durner Holliday

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TW4-24
Field Sample ID	TW4-24_08242021
Purge Date & Time	8/24/2021 9:25
Sample Date & Time	8/24/2021 9:26

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	28.65
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring
Sampling Event	2021 Q3 Chloroform
Sampler	TH/DL
Weather Conditions	Sunny
External Ambient Temperature (C)	23
Previous Well Sampled	TW4-25

Wen Depth (it)	114.00	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	70.92	

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/24/2021 9:26		7858	6.74	16.87	496	1.7	20.0	

Volume of water purged ()			
Final Depth to Water (feet)	75.37		

Name of Ce	ertified Analytical Laboratory	
AWSL		

Analytical Samples Information

	Sample	Sample		Container		Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Y	WATER	3	40ml VOA	U	HCI (pH<2), 4 Deg C	Y
Chloride	Y	WATER	1	500-mL Poly	U	None	Ν
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0922. Samples collected at 0926. Water was mostly clear. Left site at 0928.

Signature of Field Technician

Durner Holliday

Pumping Rate Calculations

Flow Rate ($Q = S/60$) (gal/min)	15.00
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TW4-25
Field Sample ID	TW4-25_08242021
Purge Date & Time	8/24/2021 9:14
Sample Date & Time	8/24/2021 9:15

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	41.27
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring	
Sampling Event	2021 Q3 Chloroform	
Sampler	TH/DL	
Weather Conditions	Sunny	
External Ambient Temperature (C)	22	
Previous Well Sampled	TW4-21	
Well Depth (ft)	136.70	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	73.49	

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/Afte
8/24/2021 9:15		2535	7.01	15.96	511	0	39.8	

Volume of water purged ()	
Final Depth to Water (feet)	84.23

Name of Certified Analy	ytical Laboratory
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	10.50
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Container			Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Y	WATER	3	40ml VOA	U	HCI (pH<2), 4 Deg C	Y
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0911. Samples collected at 0915. Water was clear. Left site at 0918.

Durree Holliday

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-60		
Field Sample ID	TWN-60_08182021		
Purge Date & Time	8/18/2021 7:14		
Sample Date & Time	8/18/2021 7:15		

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly	
Sampling Event	2021 Q3 Nitrate	
	71/01	
Sampler	TH/DL	

Weather Conditions	Partly cloudy	
External Ambient Temperature (C)	19	
Previous Well Sampled	TWN-18	

Well Depth (ft)	
Well Casing Diameter ()	
Depth to Water Before Purging (ft)	

							Dissolved	
Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
8/18/2021 7:15		1.1	6.50	23.52	555	2.3	15.0	

Volume of water purged ()		
Final Depth to Water (feet)		
Name of Certified Analytical Labo	atory	
AWSL		

Pumping Rate Calculations

Flow Rate ($Q = S/60$) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Container			Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

DI sample was collected in the lab at 0715.

Signature of Field Technician

Durnee Holliday

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TW4-60
Field Sample ID	TW4-60_08242021
Purge Date & Time	8/24/2021 12:59
Sample Date & Time	8/24/2021 13:00

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring		
Sampling Event	2021 Q3 Chloroform		
Sampler	TH/DL		
Weather Conditions	Sunny		
External Ambient Temperature (C)	26		
Previous Well Sampled	TW4-19		

Well Depth (ft)	
Well Casing Diameter ()	
Depth to Water Before Purging (ft)	

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
8/24/2021 13:00		2.6	5.73	24.35	511	10.1	8.6	

Volume of water purged ()	

Final Depth to Water (feet)

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate ($Q = S/60$) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Container			Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Y	WATER	3	40ml VOA	U	HCI (pH<2), 4 Deg C	Y
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

DI sample was collected in the lab at 1300. Left site at 1305.

Durner Holliday

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan

White Mesa Mill Field Data Worksheet For Groundwater

Location ID	TWN-65
Field Sample ID	TWN-65_08172021
Purge Date & Time	
Sample Date & Time	8/17/2021 9:17

2021 Q3 Nitrate
TH/DL

Purging Equipment	
Pump Type	
Purging Method	
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	
pH Buffer 4.0	
Specific Conductance ()	

Weather Conditions	
External Ambient Temperature ()	
Previous Well Sampled	

Well Depth (ft)	
Well Casing Diameter ()	
Depth to Water Before Purging (ft)	

							Dissolved	
Date/Time	Gallons Purged	Conductivity	рН	Temp	Redox	Turbidity	Oxygen	Before/After

Pumping Rate Calculations

Flow Rate ($Q = S/60$) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	

Name of Certified Analytical Laboratory	
AWSL	

Analytical Samples Information

Volume of water purged ()

Final Depth to Water (feet)

	Sample			Container		Preserva	ative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	Ν
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Duplicate of TWN-18

Durner Holliday

Tab C

Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Weekly, Monthly and Quarterly Depth to Water Data

Date	Time	Well	Depth to Water (ft.)	Date	Time	Well	Depth to Water (ft.)	Date	Time	Well	Depth to Water (ft.)
8/11/2021	1002	MW-0J	64.86	8/13/2021	656	MW-04	8168	8/11/2021	1033	PIEZ-01	67.30
8/11/2021	903	MW-02	109.52	8/13/2021	701	TW4-01	103.33	8/11/2021	1021	PIEZ-02	46.17
8/11/2021	1319	MW-03A	84.14	8/13/2021	652	TW4-02	98,10	8/11/2021	1411	PIEZ-03A	57.27
8/11/2021	733	MW-05	108.14	8/13/2021	751	TW4-03	64.62	8/11/2021	1354	PIEZ-04	67.35
8/11/2021	834	MW-11	85,31	8/13/2021	708	TW4-04	81.06	8/11/2021	1349	PIEZ-05	66.06
8/11/2021	737	MW-12	109.60	8/13/2021	746	TW4-05	72.02	8/11/2021	1424	TWN-01	69.25
8/11/2021	821	MW-14	101.78	8/13/2021	718	TW4-06	79.11	8/11/2021	1421	TWN-02	58.35
8/11/2021	817	MW-15	105.36	8/13/2021	711	TW4-07	82.07	8/11/2021	1417	TWN-03	42.84
8/11/2021	1311	MW-17	72.13	8/13/2021	715	TW4-08	85.28	8/11/2021	1408	TWN-04	62.32
8/11/2021	1010	MW-18	73.85	8/13/2021	742	TW4-09	70.05	8/11/2021	1016	TWN-06	80.69
8/11/2021	1028	MW-19	66.13	8/13/2021	738	TW4-10	69.35	8/11/2021	957	TWN-07	80.55
8/11/2021	1247	MW-20	86.33	8/13/2021	647	TW4-11	89.90	8/11/2021	1049	TWN-14	59.48
8/11/2021	1256	MW-22	66.39	8/13/2021	918	TW4-12	55.88	8/11/2021	1044	TWN-16	47.85
8/11/2021	742	MW-23	113.84	8/13/2021	914	TW4-13	56.95	8/11/2021	1403	TWN-18	62.44
8/11/2021	937	MW-24A	111.11	8/13/2021	906	TW4-14	77.52	8/11/2021	919	TWN-19	54.03
8/11/2021	934	MW-24	110.05	8/13/2021	734	TW4-16	73.70	8/11/2021	1059	TWN-20	77.95
8/11/2021	830	MW-25	81.28	8/13/2021	800	TW4-18	73.11	8/11/2021	1111	TWN-21	79,19
8/11/2021	916	MW-26	75.40	8/13/2021	945	TW4-19	73.40	8/11/2021	906	DR-05	83.18
8/11/2021	948	MW-27	58.03	8/13/2021	620	TW4-21	72.33	8/11/2021	859	DR-06	94.08
8/11/2021	920	MW-28	74.65	8/13/2021	634	TW4-22	68.20	8/11/2021	1158	DR-07	91.91
8/11/2021	908	MW-29	107.15	8/13/2021	730	TW4-23	75.74	8/11/2021	851	DR-08	51.32
8/11/2021	712	MW-30	75.18	8/13/2021	630	TW4-24	68.71	8/11/2021	847	DR-09	86.52
8/11/2021	841	MW-31	69.33	8/13/2021	625	TW4-25	69.25	8/11/2021	840	DR-10	78.38
8/11/2021	846	MW-32	82.18	8/13/2021	722	TW4-26	73.95	8/11/2021	1335	DR-11	97.93
8/11/2021	755	MW-33	DRY	8/13/2021	843	TW4-27	79.18	8/11/2021	1330	DR-12	91.88
8/11/2021	806	MW-34	107.38	8/13/2021	922	TW4-28	49.36	8/11/2021	1325	DR-13	69.82
8/11/2021	749	MW-35	112,25	8/13/2021	902	TW4-29	78.48	8/11/2021	822	DR-14	76.19
8/11/2021	746	MW-36	110.51	8/13/2021	850	TW4-30	75.16	8/11/2021	834	DR-15	92.85
8/11/2021	810	MW-37	106.06	8/13/2021	847	TW4-31	76.41	8/11/2021	815	DR-17	64.68
8/11/2021	1237	MW-38	70.28	8/13/2021	927	TW4-32	56.43	8/11/2021	750	DR-19	63.28
8/11/2021	1230	MW-39	64.65	8/13/2021	839	TW4-33	78.25	8/11/2021	746	DR-20	55.45
8/11/2021	1218	MW-40	79.85	8/13/2021	858	TW4-34	76.71	8/11/2021	730	DR-21	100.54
				8/13/2021	854	TW4-35		8/11/2021	757	DR-22	DRY
1W-26 = TV	W4-15			8/13/2021	910	TW4-36		8/11/2021	737	DR-23	69.05
1W-32 = TV				8/13/2021	638	TW4-37		8/11/2021	804	DR-24	44.51
Comments:	,			8/13/2021	755	TW4-37		01.1/2021		2	. 1.01
comments.				8/13/2021	642	TW4-38					
				8/13/2021	726	TW4-40					
				8/13/2021	705	TW4-40	88.87				
			6	2	-		1				
				8/13/2021	835	TW4-42	69.93				

Name: Tanner Holliday, Deen Lyman Date: 8/11/2021 - 8/13/2021

Date ______

Name Deen Glyman, Jonner Halliday

T	ime	Well	Depth*	Comments	System Operational (If no no any problems/corrective actions
09	52	MW-4	82.44	Flow 4.0	Yes No
				Meter 2955791.34	Kes No
09	13	MW-26	72.52	Flow 16.0	Vers No
				Meter 597593.5	No
* 114	12	TW4-19	72.27	Flow 16.0	¥ans No
				Meter 2322416.5	No
N	A	TW4-20	NA	Flow NA	Yes Ma
				Meter NA	Yes the
rai	4	TW4-4	85.25	Flow 16.4 -	Xes No
	_			Meter 765536.0	No No
083	7 7	TWN-2	60.16	Flow 16.0	Yes No
				Meter 76876.52	Yes No
085	5 1	W4-22	68.77	Flow 16.2	Xiese No
				Meter 808523.7	Yes No
0841		W4-24		Flow 15.8	Xes No
48-1			- arres	Meter 1670433.54	No No
0830	T	W4-25		Flow 10.2	Kiens No
0030	Ť			Meter 861622,49	Xana No
8958	2 1	W4-1	105.16	Flow 12.8	Yans No
-11C	1			Meter 367658.7	Yess No
0946		N4-2	108.08	-low 16.4	Yes No
0110	Ť		- remun -	Meter 445734.7	Yess No
0932	T	V4-11	90.17 F	Flow 14,8	
D 1 5 d	1		- INIL -	Aeter 3989.66	No Xana No
	TV	V4-21			
0820	1			low 16.4 Neter 2690398.40	No
	714	14.97			
0900	111	/4-37		low 18.0 leter 2015878.5	Xees No
0901	TW	/4-39	and the second se	low 17.8	Kers No
AUL	1			leter 821675.0	Yess No
023	TW	/4-40		low 18.0	No No
1.03, J				leter 812447.66	No No
008	TW	4-41		low (0.0	Xes No
281.0			M	eter 348744,50	VES NO

Abandoned

Corrective Action(s) Taken (Please list well number):

Date 7-12-21

Name Deen Colymon Tomer Halling

Tim	e Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
094		81.96	Flow 4.0	Xes No
			Meter 1961850.20	No No
091-	7 MW-26	92.55	Flow 16.0	No No
			Meter 599498.3	Xas No
1420	TW4-19	72.29	Flow 16.2	X No
- Ba		laiai	Meter 2832066.4	Yes No
NA	TW4-20	NA	Flow NA	Yes the
- Can		- 19.6	Meter NA	Yes Ma
1330	TW4-4	85.17	Flow	
1330	1		Meter 7664763	No No
anic	TWN-2			
0815	1 ////	58.80	Meter 78326.63	No No
	-			
0853	TW4-22	67.35	Flow 18.0	X No
		_	Meter 809911.7	No
0842	TW4-24	66,24	Flow 15.4	Yes No
			Meter 1674098.15	No No
0806	TW4-25	70.06	Flow 10.2	Ves Nó
0.00.0		1	Meter \$67041.03	Xee No
1315	TW4-1	105.25	Flow 12.6	Yes No
			Meter 368447.3	No No
	TW4-2			
2932	1 44 4-2	1 Juni 1	Ном 16.0 Meter 446629.6	No No
	T14/4 44	++		
2923	TW4-11		Flow 12.8	Yes No
		<u> </u>	Meter 3983.84	No No
758	TW4-21		Flow 16.2	Xees No
		I	Veter 2696669.10	Yes No
901	W4-37	80.14	low 18.0	Yees No
			Meter 2019477.1	Ves No
909 1	W4-39		-low 17.6	Yes No
			Neter 812519.0	Yese No
130 T	W4-40	71.65 F	low 18.0	Yes No
			Aeter \$14527.81	Yes No
324 T	W4-41		low H.S.	No No
		[N	leter 349600.43	Kass No

Operational Problems (Please list well number):

Abardoned.

Corrective Action(s) Taken (Please list well number):

		Monthly Dep	th Chec	k Form	
Date 7	-14-21		Name 7	Deen G-Lymo	In Towner Hallicher
				/	y many
<u>Time</u>	Well	Depth*	Time	Well	Depth*
1303	MW-4	82.81	1423	TWN-1	69.24
1257	TW4-1	102.29	1415	TWN-2	58.50
1311	TW4-2	110.13	ामपम	TWN-3	42.77
1318	TW4-3	64.65	1439	TWN-4	62.11
1249	TW4-4	76.31	1413	TWN-7	80.67
1327	TW4-5	72.02	1435	TWN-18	62.45
1245	TW4-6	79,12	1409	MW-27	57.98
1300	TW4-7	82,23	1405	MW-30	75.18
1307	TW4-8	85.42	1401	MW-31	69.37
1324	TW4-9	70.03			
1330	TW4-10	69,41			
1315	TW4-11	88.91			
1218	TW4-12	55.86	·		
1215	TW4-13	56.88	1221	TW4-28	49.35
1208	TW4-14	77.39	1205	TW4-29	78.48
1334	TW4-15	76.18	1152	TW4-30	75.08
1355	TW4-16	73.78	1149	TW4-31	76.28
1358 1934	TW4-17	01- 82.13	1224	TW4-32	56.38
1426	TW4-18	73.08	1143	TW4-33	78.15
//33	TW4-19	12.03	1158	TW4-34	76.66
NA	TW4-20	NA	1155	TW4-35	75,42
1430	TW4-21	72.04	1212	TW4-36	58.15
1347	TW4-22	66.08	1341	TW4-37	10.70
1239	TW4-23	75.69	1321	TW4-38	60.11
1351	TW4-24	68.33	1337	TW4-39	72.22
1414	TW4-25	69:49	1232	TW4-40	12.12
1236	TW4-26	73.93	1253	TW4-41	88.93
1146	TW4-27	79.05	1140	TW4-42	69.78

Comments: (Please note the well number for any comments)

TW4-20 Abandoned

Date 7-19-21

Name Deen Colyman Tonner Hallichay

Tir	ne Well	Depth'	Comments	System Operational (If no not any problems/corrective actions)
110		81.92	Flow 4.0	No
			Meter 2968864.40	No No
105	0 MW-26	73.06	Flow 16.2	Yes No
	~	1100	Meter 601696.9	Xee No
114	5 TW4-19	76.85		Xee No
			Meter 2842970.6	Kas No
NA	TW4-20	NA	Flow NA	Yes datas
			Meter NA	Yes the
112	4 TW4-4	84.67	Flow 16.8 -	No No
			Meter 767381.6	No No
084:	1 TWN-2	58.20	Flow 16.0	Yes No
			Meter 80004.48	Xee No
085	8 TW4-22	69.17	Flow 16.2	Vers No
			Meter 811754.5	Xee No
0850	TW4-24	67.33	Flow 16:4	No No
<u> </u>		(JII 3.)	Meter 1678132.46	Xes No
0021	TW4-25	66.65		No No
10.54		66.05	Meter 873347,32	No No
113	TW4-1	106.16	Flow 12.8	Xes No
110			Meter 368908.1	Yes No
102	TW4-2	105.82	Flow 16.4	Vare No
IVA		103.80	Meter 447611.7	Ves No
056	TW4-11	90.15	Flow 14.8	Yes No
096			Meter 4004.92	No No
	TW4-21		E 1	
830	· · · · · · · · · · · · · · · · · · ·		Meter 2703862.80	Vers No
	714/4 07			
010	TW4-37		Flow 18.0 Meter 20235/36.3	Yees No
	TW4-39			
37	111100		Flow 18.0 Meter 825976,4	Vers No
30	TW4-40		Flow 18.0	Kiese No
20			Meter \$21100.21	Yees No
18	TW4-41	87.88	Flow 6.0	No No
			Neter 350618.44	YSSE No

Operational Probl

Abandoned

Corrective Action(s) Taken (Please list well number):

Tir	ne Well	Depth*	/	System Operational (If no note any problems/corrective actions)
	55 MW-4	83.00	1 ma	Yes No
			Meter 2975980.99	Yes No
08	3 2 MW-26	72,85	Flow 16,0	No No
			Meter 603804.9	X No
113	5 TW4-19	72.15		Xee No
			Meter 28530:25.1	No No
NA	TW4-20	NA	Flow NA	Yes the
	_		Meter NA	Yes day
091	5 TW4-4	81.61	Flow 16.4 .	Yes No
			Meter 768203,1	Yes No
075	5 TWN-2	57.90	Flow 16,0	X No
		_	Meter 81746.11	Yes No
0811	TW4-22	75.22	Flow 16.6	No No
			Meter 813475.9	No No
1804	TW4-24	70.14	Flow 15,8	No No
			Meter 1682235.08	No No
0749	TW4-25	66,22	Flow 10,4	No No
			Meter 879773.87	No No
0903	TW4-1	103.25	Flow 12.8	Yes No
-			Meter 369853.5	Yese No
0847	TW4-2	108.08	Flow 16.2.	Yes No
			Meter 448666.9	Yes No
0840	TW4-11	89.30	Flow 12.8	Yan No
			Meter 4125.85	Xee No
743	TW4-21	75.10	Flow 16,4	Xee No
			Meter 27/1025.07	No No
818	TW4-37	74.76	Flow 18.0	No No
2010			Veter 2027572.8	Yess No
825	TW4-39	- Add at the second	-low 18.0	Heres No
		the second se	Meter 827298.0	No No
923	TW4-40		Flow 18.0	Yees No
			Meter 825786.78	No No
909	FW4-41		How 6.0 Neter 35/621,15	No No
	I Problems (P			

Corrective Action(s) Taken (Please list well number):

Date 8-2-21

Name Deen & Lyman, Janaer Holliday

	me	Well	Depth	<u>Comments</u>	System Operational (If no note any problems/corrective actions)
09	36	MW-4	81.81	Flow 4.0	Yass No
				Meter 2983026.55	No
09	12	MW-26	80.44		Ver No
1º1				Meter 606181.3	X NO
113	0	TW4-19	72.34	Flow 14.8	
<u><u> </u></u>	0		10031	Meter 2864313.3	¥ese No ¥see No
NA		TW4-20	NA	Flow NA	
	1			Meter NA	Yes Me
=		TW4-4			
095	4	1 4 4-4	86.40	1010	Kase No
=				Meter 769/22.7	No No
082	6	WN-2	58.12		Yes No
	-			Meter 83405.33	No No
084	3 7	W4-22	65.90	Flow 16.4	Yes No
	-			Meter \$15107.7	X No
0931	टी⊤	W4-24	66.18	Flow 15.4	Yes No
	1		1	Meter 1686423.76	No No
0817	T	W4-25		Flow 10.8	
0811	+	114-20	71.68	Meter 886029,98	¥ess No ¥ess No
0942		N/A_1	100 70	tan t	
0442	4	/	108.73	Flow 12.8 Meter 370422.2	Yes No
					Yes No
0926	TV	V4-2	111.12	Flow 16.4	No No
_	+			Meter 449652.1	No No
2921	TV	V4-11		Flow 16.0	Xees No
	-		22 1 34	Meter 4256.30	No No
7756	TM	/4-21	72.31	Flow 16.4	X No
(1)4			the second s	Meter 2718411.92	No
A.10	TIA	4-37		-	
849	1100	4-37		How 18,0 Meter 2031507.8	Yese No
856	TW	4-39	the second se	Flow 18.0	
0 7 10				Meter 830575.0	Views No
002	TW	4-40	the second s	Flow 18.0	Ves No
NVA.			- and -	Meter 830233.69	NO NO
945	TW	4-41		Flow 6,0	Xees No
	1			Meter 352700.19	No No

Operational Problems (Please list well number):

TW4-20 Abandoned

Corrective Action(s) Taken (Please list well number):

Tim	And and a second s	Depth*	Comments	System Operational (If no not any problems/corrective actions)
091	5 MW-4	85.25		Yess No
	_		Meter 2989942.02	XONS NO
085	2 MW-26	72.84	Flow 16,4	Yese No
			Meter 608393.3	Yes No
120	9 TW4-19	72.05	Flow 16.0	Yes No
			Meter 2874602.4	No No
NA	TW4-20	NA	Flow NA	Yes Ma
			Meter NA	Yes Mas
0934	TW4-4	84.33	Flow 16.8 -	Yes No
			Meter 770172.7	Yes No
0821	TWN-2	59.50	Flow 16.0	Ves No
			Meter 85546.88	Here No
0834	TW4-22	66.71	Flow 16.2	Yes No
			Meter 816948.5	No No
0910	TW4-24	66.54	Flow 16.4	Yes No
UDAD		- 04.51	Meter 1690619.77	Yes No
0812	TW4-25	69.91	Flow 10.8	Yees No
Unid		69.91	Meter 892493.98	Yes No
0921	TW4-1	105.11	Flow 12.8	Yes No
		1 manual 1	Meter 370900.0	Yars No
0000	TW4-2	92.55	Flow 16.4	
0404	1117-6		Meter 450507.8	No Verse No
	TW/4-11		<u>Flaur</u>	
2900	TW4-11		Meter 4470.28	Vers No
	THIA DA			
805	TW4-21		Flow 16.4	Xisse No
			Meter 2725703.99	Yes No
1840	TW4-37		Flow 18.0	Xees No
	TW/4 20			Xee No
846	FW4-39	the state of the s	Flow 18.0 Meter 83207.11	Yese No
aun T	W4-40		Flow 18.0	Vers No
114		- Colore Marine	Aeter 834911.37	NO NO
927 1	W4-41	88.66 F	low 6,0	No No
		N	Neter 35 38 09,17	No No

Corrective Action(s) Taken (Please list well number):

Date 8-16-21

Name Deco Colyman, Tanger Holliday

Time	Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
0904	MW-4	82.62	Flow 4.0	Yes No
			Meter 2996981.43	No No
0839	MW-26	72,89	Flow 16.0	No No
			Meter 610589.1	Kee No
1010	TW4-19	74.72	Flow 14.0	Yes No
		1	Meter 2885144.1	Yese No
NA	TW4-20	NA	Flow NA	Yes the
			Meter NA	Yes the
0922	TW4-4	88.54	Flow 16.0 -	Yess No
			Meter 771004.4=	No No
0755	TWN-2	64.20	Flow 16.0	Xes No
			Meter 87383.32	View No
0822	TW4-22	71.88	Flow 16.0	Yes No
U Q ANA		11.44	Meter 818689.1	View No
	TW4-24	1 10 110	Flow 16.0	
0814	1117 27	68.40	Meter 1694711.57	No No
	FW4-25			
0748	1004-20	72,71	Meter \$98809.91	No No
0000 7	W4-1		P*1	
0909	114-1	101.16	Meter 371685.2	Yees No ¥ees No
			F1.	
2856	W4-2	11.02	Flow 16.0	No No
			Meter 451565,7	Kange No
2852 T	W4-11		Flow 12.8	No No
			Meter 4593.12	Yese No
739 T	N4-21	the second s	Flow 16.4	Yas No
			Meter 2732950.09	No No
826 TV	N4-37		Flow 18.0	Xees No
			Veter 2039401.0	Xee No
\$33 TV	V4-39	the second s	Flow 18.0	Yess No
	14.40		Meter 835614.2	No No
930 TV	v4-40		Flow 18.0	No No
TM	/4-41		Neter 839504.44	Yese No
916 10			low 6,0 Aeter 354913.22	Vers No
perational P				

Corrective Action(s) Taken (Please list well number):

T	me Wel	l Depth*		System Operational (If no note any problems/corrective actions)
10	And a statement of the	81,97	Flow 4.0	Kes No
He.			Meter 3003988.15	ALES NO
	46 MW-26			
04	46 11114-20	72.50	Luciv.	No
-	C TINA AC		Meter 6/2724,3	No No
μIH	5 TW4-19	72.08	Flow 16.0	Xee No
			Meter 2895120.1	No
N	9 TW4-20	NA	Flow NA	Yes Ma
			Meter NA	Yes No
103	5 TW4-4	81.40	Flow 16.0 -	Yes No
			Meter 7720968	Xes No
090	8 TWN-2	88.29	Flow 16.0	Yes No
			Meter 88933,57	Yes No
092	3 TW4-22	66.89	Flow 16.0	
UTA	5 1114 22	66.89	Meter \$20302.9	Yess No
				Yes No
0910	, TW4-24	10.71	Flow 15.6	Xan No
		-	Meter 1698976.92	No No
0900	TW4-25	69.74	Flow 10.6	Xiesa No
			Meter 905386.07	No No
1021	TW4-1	102.77	Flow 12.0	Yess No
			Meter 372379,8	Yes No
1003	TW4-2	107.85		Yes No.
100.3	1016	101.85	Meter 452554.3	No No
	TDALA 44			
0955	TW4-11		Flow 12.8	No No
-			Meter 4629.08	Yaas No
0852	TW4-21	the second s	Flow 16.4	Yes No
		×	Meter 2740362.44	No No
0931	TW4-37	-	Flow 18.0	VES No
			Meter 2043337.1	No No
7938	TW4-39		low 18.0	Xes No
c au			Meter 83731.81	No No
045	TW4-40	the second se	Flow 18.0	Yes No
- 1ª			Aeter 844366.49	No No
028	TW4-41		low 6.0	Views No
		I	Neter 356023.22	No No

Operational Problems (Please list well number):

Tw 4-Abandoned

Corrective Action(s) Taken (Please list well number):

Ti	me We	<u>Depth</u>	and the second se	System Operational (If no note any problems/corrective actions)
103	57 MW-4	82.40		No No
	_		Meter 3010969.02	No
095	3 MW-26	82.32	Flow 16.0	Xees No
			Meter 615055.6	No No
124	6 TW4-1	9 90.85	Flow 16,0 .	No
			Meter 2906255:9	Xees No
NA	TW4-20	D NA	Flow NA	Yes the
			Meter NA	Yes 👪
122	0 TW4-4	85.17	Flow 16.0 -	Yes No
			Meter 772915.0	Yes No
082	6 TWN-2	57.84	Flow 16.0	Yes No
			Meter 90388.36	No No
000	2 TW4-22	66.83	Flow 16.2	Yes No
030			Meter 822161.0	Xan No
	TW4-24			
0820	2 1 1 1 1 1 2 4	66.20	Flow 16.0 Meter 1703040.34	No No
	TINA OF			
0837	TW4-25	66.63	Flow 10.4	Xees No
	TW4-1		Meter 911606.68	Yes No
1047	1004-1	104.78	Flow 12.8 Meter 372246.0	Yes No
		-	Maker	No No
1024	TW4-2	103,93	Flow 16.0	Yes No
		_	Meter 453432.4	No No
009	TW4-11	89.11	Flow 12.8	Yess No
			Meter 4842.00	No No
2807	TW4-21	75.40	Flow 16.0	Yes No
			Meter 2747653,57	Yare No
1921	TW4-37	66.17	Flow 18.0	Yess No
			Meter 2047193.2	Yes No
938	TW4-39		Flow 18.0	Yes No
			Meter \$40089.1	Vane No
226	TW4-40		Flow 18.0	Yes No
	T14/4 44		Meter 848935,55	No No
210	TW4-41		Flow 6.4	Var No
peration	0		Meter 357051,35	No No

Corrective Action(s) Taken (Please list well number):

Tim	e <u>Well</u>	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1209	B MW-4	81.95	Flow 4.0	Kes No
			Meter 3018883.51	Yes No
1147	MW-26	74.20	Flow 16.0	No No
	TIA/4 10		Meter 617582.2	No No
1314	TW4-19	73.108	Meter 2918433.6	Veess No Veess No
NA	TW4-20	NA	Flow NA	Yes the
			Meter NA	Yes 🍻
1226	TW4-4	73.10	Flow 16.8 -	No No
1039	TWN-2	58.25	Flow 16.0	
10.34		- A BLOCK	Meter 91995.48	No No
1053	TW4-22	- interest	Flow 16.0	X No
			Meter 824170.3	No No
1047	TW4-24		Flow 15.8	Yes No
			Meter 1707835.88	Kees No
033	TW4-25		Flow 10.8	No No
214	TW4-1		Meter 919185.23 Flow 14.0	No No
		10110	Meter 373721.9	No No
159	TW4-2		Flow 14.8	Yes No
			Meter 454539.2	View No
153	TW4-11	and the second se	low 15.0 Neter 4993,73	No No
022	TW4-21	75.11 F	low 16.8	Yan No
		N	leter 2755462.33	Yes No
35	FW4-37	second and in the second se	low 18.0	No No
41 7	W4-39		low 18.0	Yes No
			leter \$43003.3	No No
238 T	W4-40	the second se	low 18.0	Yes No
=		1	eter 854287.66	Vase No
20 1	W4-41	LI LI LE LE	ow 6.0	No No

Meter 3583 29.33

. .

No

Ver

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date 9-13-21

Name Deen & Lyman, Tanner Halliday

Tim	<u>ie Well</u>	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1052	2 MW-4	81.96	Flow 4.0	Yes No
			Meter 3024718.77	No No
1027	MW-26	72.80	Flow 16.2	Yano No
prese l		1 12:00	Meter 619470.3	Van No
1347	TW4-19	70.21	P ALL	
1571		72.3\	Meter 2927548.9	Xeen No
	TW4-20		(FF)	
NA	1117-20	NA	1973	Yes the
	777444			Yes Me
1300	TW4-4	76:30	Flow 16.6	Xee No
			Meter 774730.6	No No
0944	TWN-2	58.72	Flow 14.0	Yese No
		_	Meter 93156.33	Yess No
1008	TW4-22	73.11	Flow 16.0	Yees No
		1	Meter 825324.9	Yess No
	TW4-24			
1003	1 1 1 4-24	65.94		Xee No
			Meter 1711331.22	Yess No
0936	TW4-25	66.21	Flow 10.4	No No
			Meter 924782.48	No No
1248	TW4-1	103.28	Flow 12.6	Yess No
			Meter 374313.7	View No
045	TW4-2	100.15	Flow 16.0	No No
e la			Meter 455476.1	Xee No
	TW4-11		FL	
040	100-7-11		How 16.0 Meter 5096.07	Vera No
1929	TW4-21		Flow 16.4	Vas No
			Meter 2762172.44	X No
013	TW4-37		Flow 18.0	Yes No
			Meter 2054614.7	No No
020 7	FW4-39		Flow 18.0	Yes No
			Meter 84537.57	Yes No
307 7	W4-40	72.14	Flow 18.0	Yess No
			Meter 858041.80	No No
254 T	W4-41		flow G.D	Yes No
		1	Meter 359253.68	No No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

1

	Ν	Monthly Dep	th Chec	k Form	
Date q	-17-21		Name	Deen G. Lyman	2, Tanner Holliday
Time 1052 1056 1056 1332 1042 1341 1038 1325	<u>Well</u> MW-4 TW4-1 TW4-2 TW4-3 TW4-4 TW4-5 TW4-5 TW4-6 TW4-7	Depth* 	Time 1140 1125 1204 1200 1150 1156 1144 1210	<u>Well</u> TWN-1 TWN-2 TWN-3 TWN-4 TWN-7 TWN-7 TWN-18 MW-27 MW-30	Depth* <u>G9.18</u> <u>58.42</u> <u>42.69</u> <u>62.15</u> <u>80.59</u> <u>62.49</u> <u>57.92</u> <u>75.11</u>
1328	TW4-8	-85.40	1214	MW-31	69.41
1338	TW4-9	70.10			
1345	TW4-10	69.35			
1101	TW4-11	90.12			
1010	TW4-12	54.08		-	
1007	TW4-13	57.05	1014	TW4-28	49.55
1000	TW4-14	77.33	0957	TW4-29	78.58
1105	TW4-15	81.10	0946	TW4-30	75.10
1200	T\W4-16	72 18	0042	TW4-31	71 71

1105	TW4-15	81.10	0946	TW4-30	75.10
1349	TW4-16	73.69	0943	TW4-31	76.26
1353	TW4-17	82.19	1017	TW4-32	56.58
1136	TW4-18	73,15	0937	TW4-33	78,28
1359	TW4-19	71-01	0954	TW4-34	76.82
NA	TW4-20	NA	0949	TW4-35	75.48
1133	TW4-21	71.64	1004	TW4-36	58.41
1116	TW4-22	72.58	1112	TW4-37	76.14
1031	TW4-23	75.91	1335	TW4-38	60.04
1120	TW4-24	70,70	1108	TW4-39	72.29
1128	TW4-25	66.66	1028	TW4-40	72.21
1034	TW4-26	73.99	1045	TW4-41	99.93
0939	TW4-27	79.15	0933	TW4-42	69.95

Comments: (Please note the well number for any comments)

FW4-20 Abandoned

Name Tanner Holliday

Date 9/20/2021

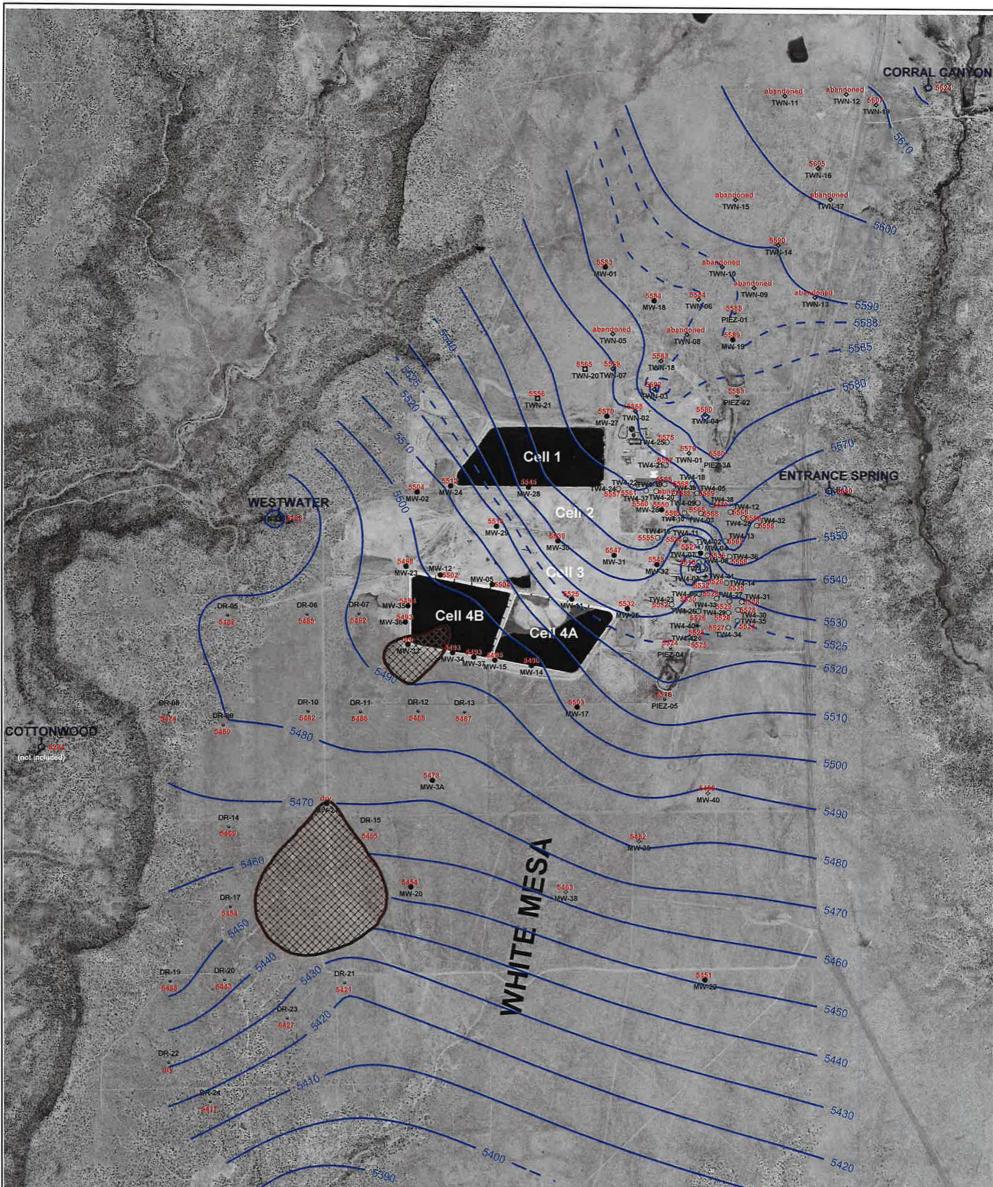
Tim	e <u>Well</u>	Depth'	Comments	System Operational (If no not any problems/corrective actions)
1245	MW-4	84.64	Flow 4.0	(Yes)No
			Meter 3031774.82	(Yes No
1230	MW-26	79.23	Flow 16.0	(Yes)No
1020			Meter 621602.1	(Yes) No
1320	TW4-19	74.46	Flow 16.0	
1520		11.10	Meter 2938379.3	
	TW4-20			
NIA	111720	NIK	Meter MA	Yes No Yes No
	TIALA			
1300	TW4-4	76.40	Flow 16.5	Yes No
		+	Meter 775644,6	Yes No
1208	TWN-2	59.13	Flow 16.0	Yes No
			Meter 94413.12	(Yes) No
1217	TW4-22	73.12	Flow 16.0	Yes No
			Meter 8273838	Yes No
10.12	TW4-24	64.98	Flow 16.5	
1213	1444-24	61.10	Meter 1715692,79	Yes No
204	TW4-25	66.83	Flow 10.5	Yes No
		-	Meter 931390.83	Yes No
250	TW4-1	97.45	Flow 12.5	Yes No
			Meter 375097.9	(Yes)No
239	TW4-2	95.76	Flow 16.0	(Yes)No
			Meter 456347.5	(Yes) No
235	TW4-11	90:87	Flow 16.0	Yes No
			Meter 5109.05	(Yes) No
-	TH/4 04			
200	TW4-21	the second se	Flow 165	Yes No
			Meter 2769474.05	Yes No
21 7	FW4-37		Flow 18.0	Yes No
			Meter 2058426.0	Yes No
26 T	W4-39		Flow 18,0	(Yès) No
			Meter 8489413	Yes No
06 T	W4-40		Flow 18.0	Yes No
			Meter 862558.69	Yes No
55 T	W4-41	the second se	Flow 6.0	Yes No
			Meter 360342.18	(Yes)No

TW4-20 has been abandoned

Corrective Action(s) Taken (Please list well number):

Weekly Inspection Form

Date 9-27-21


Name Deen Glyman, Janer Holliday

Time	e Well	Depth*	Comments	System Operational (If no not
1			1 and	any problems/corrective actions)
0921	1010 0	88.95	Flow 4,0 Meter 3038502,55	Yes No
				Yes No
0902	MW-26	108.95		Xes No
			Meter 623866.4	Zees No
1017	TW4-19	72.93	Flow 16.0	Yes No
			Meter 29499555	Xes No
NA	TW4-20	NA	Flow NA	Wes (
			Meter NA	Plas (the
0021	TW4-4	76.17	Flow 16.2	Yes No
0-150	1	10.11	Meter 7765263	Xes No
-	TIA/NI 2		1	
0830	TWN-2	58.71	1.901.00-	No No
			Meter 95798.58	X No
11842	TW4-22	67.85	Flow 16.0	Xes No
			Meter 829082.9	Yess No
0001	TW4-24	65.50	Flow 16.2	Vers. No.
0836	1 117-24	67.70	1.000	No No
				No
0815	TW4-25	69.40	Flow 10.2	Yess No
		3	Meter 937741.78	Xes No
0925	TW4-1	103.15	Flow 12.9	Yies No
			Meter 375652.7	No No
0915	W4-2	102.86	Flow 14.0	Xee No
1912		- I COLUM	Meter 457275.5	Xees No
2908	W4-11	111100	Flow 14.8	Xano No
			Meter 5239.84	Xee No
2800 T	W4-21	108.45	Flow 16.4	No No
			Meter 2776441.1	No No
T	WA 37			
850 T	W		low 18.0 Meter 2062036.3	Yess No
OF (T	W4-39			
856 1	50-F-10			Yese No
T	NA 40		Meter 851588.0	No No
945 T	W4-40		low 18.0	Kees No
m	N4-41		Neter 8669688.2	No No
931 11	V4-4		Mil S	VERSO NO
		IN	Neter 361447.55	YES No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

* Depth is measured to the nearest 0.01 feet.

EXPLANATION

estimated dry area

temporary perched nitrate monitoring TWN-20 well installed April, 2021 showing elevation in feet amsl

TW4-42 ¢5525

temporary perched monitoring well installed April, 2019 showing elevation in feet amsl

MW-38

perched monitoring well elevation in feet amsl

TW4-40

temporary perched monitoring well +5525 installed February, 2018 showing elevation in feet amsl

MW-5 **5504**

perched monitoring well showing elevation in feet amsl

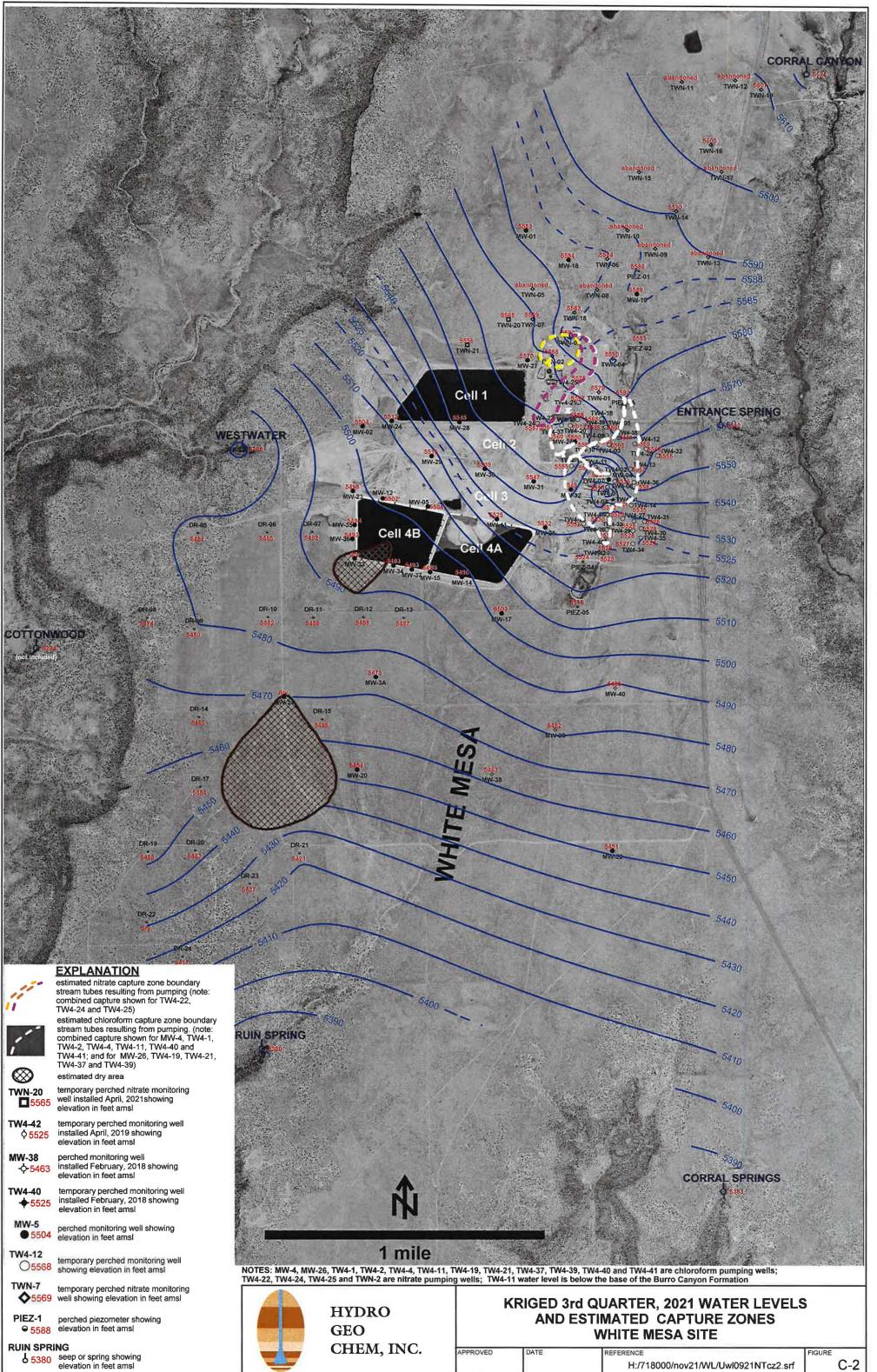
TW4-12

05568 temporary perched monitoring well showing elevation in feet amsl

TWN-7

temporary perched nitrate monitoring \$5569 well showing elevation in feet amsl

PIEZ-1

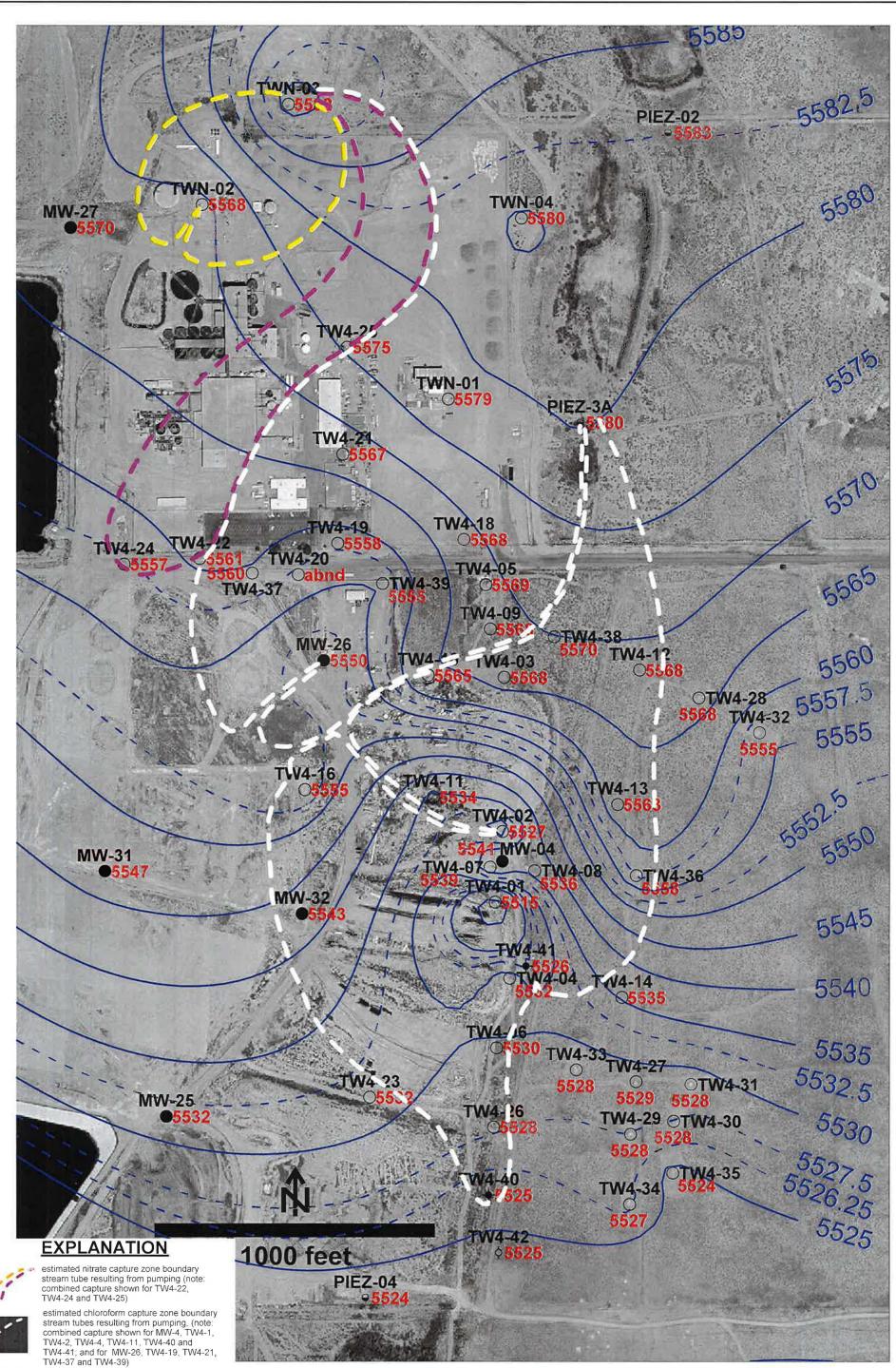

perched piezometer showing ➡ 5588 elevation in feet amsl

RUIN SPRING

5380 seep or spring showing elevation in feet amsl

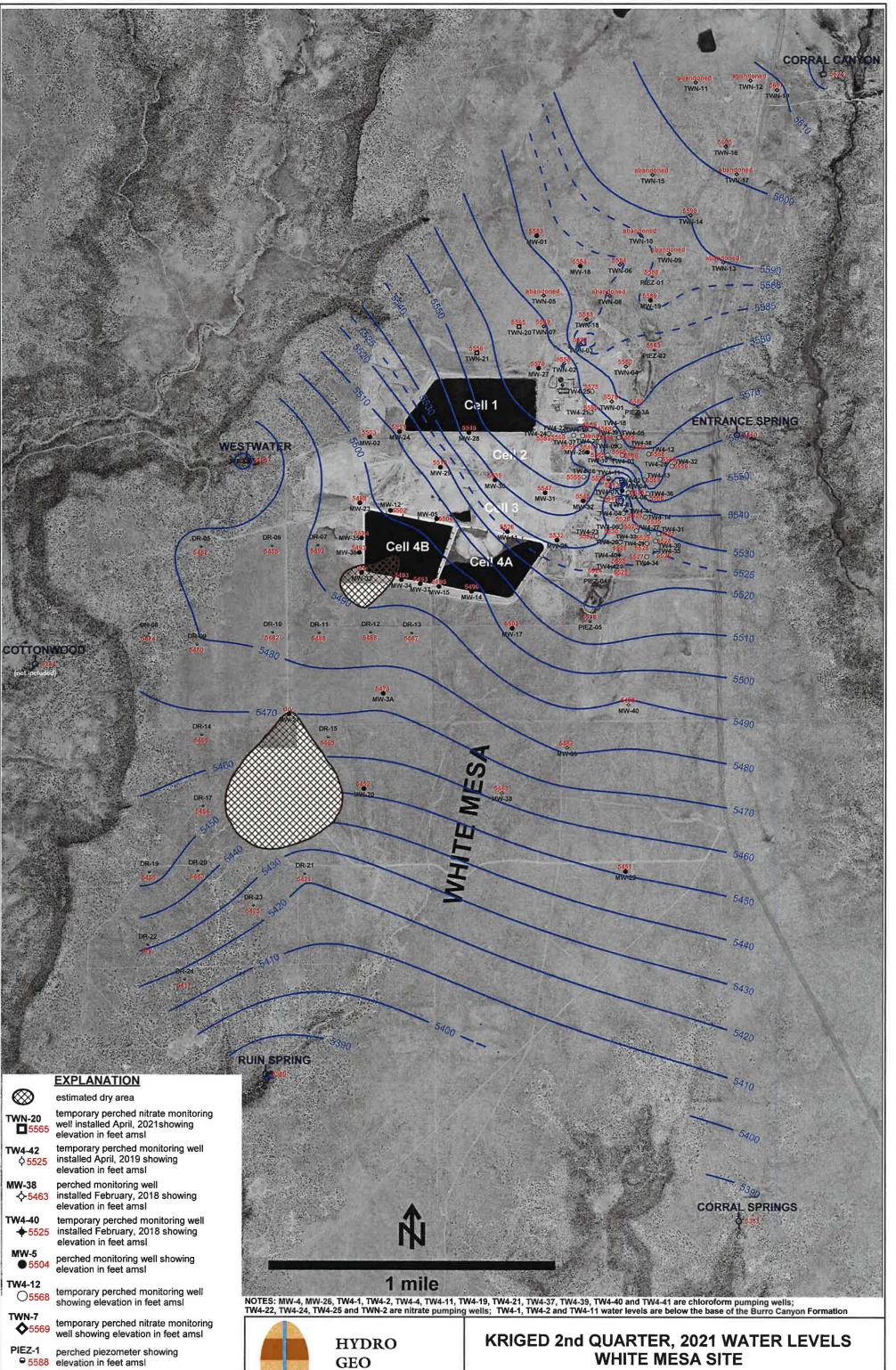
RUIN SPRING		
2000 C.M.		5410
		5400
		CORRAL SPRINGS
	Â	O SARE
	IN	
	1 mile	
NOTES: MW-4, MW- TW4-22, TW4-24, TW	26, TW4-1, TW4-2, TW4-4, TW4-11, T /4-25 and TWN-2 are nitrate pumpin	W4-19, TW4-21, TW4-37, TW4-39, TW4-40 and TW4-41 are chloroform pumping wells; g wells; TW4-11 water level is below the base of the Burro Canyon Formation
	HYDRO	KRIGED 3rd QUARTER, 2021 WATER LEVELS
	GEO	WHITE MESA SITE
	CHEM, INC.	APPROVED DATE REFERENCE

H:/718000/nov21/WL/Uwl0921srf



NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-21, TW4-37, TW4-39, TW4-40 and TW4-41 are chloroform pumping wells; TW4-22, TW4-24, TW4-25 and TWN-2 are nitrate pumping wells; TW4-11 water level is below the base of the Burro Canyon Formation

	HYDRO GEO	ŀ		rd QUARTER, 2021 WATER LEVE ESTIMATED CAPTURE ZONES WHITE MESA SITE (detail map)	_S
Y	CHEM, INC.	APPROVED	DATE	REFERENCE H:/718000/nov21/WL/Uwl0921NTcz.srf	FIGURE C-3


temporary perched monitoring well installed April, 2019 showing elevation in feet amsl temporary perched monitoring well installed February, 2018 showing elevation in feet amsl perched monitoring well showing elevation in feet amsl temporary perched monitoring well showing elevation in feet amsl

perched piezometer showing

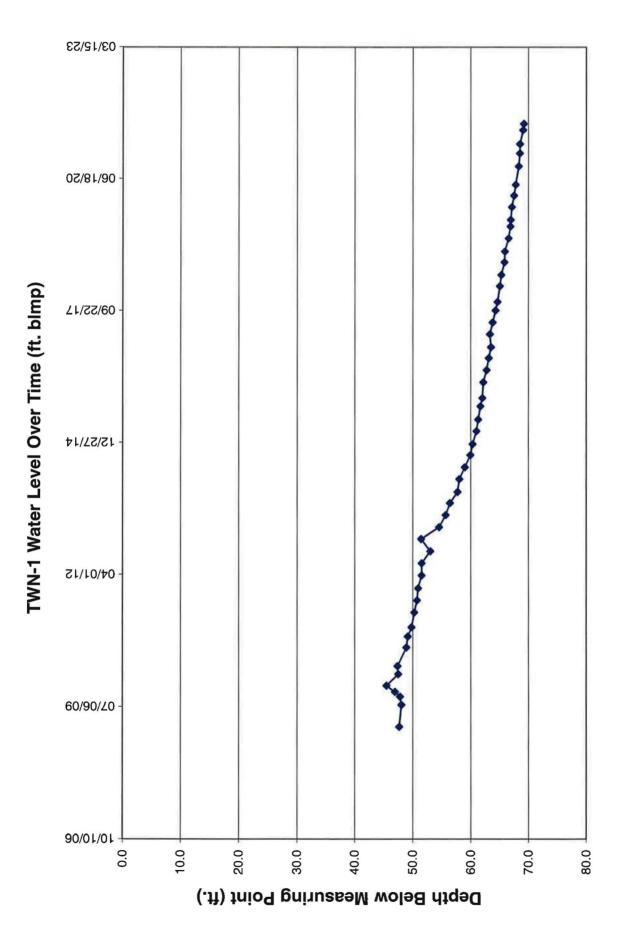
elevation in feet amsl

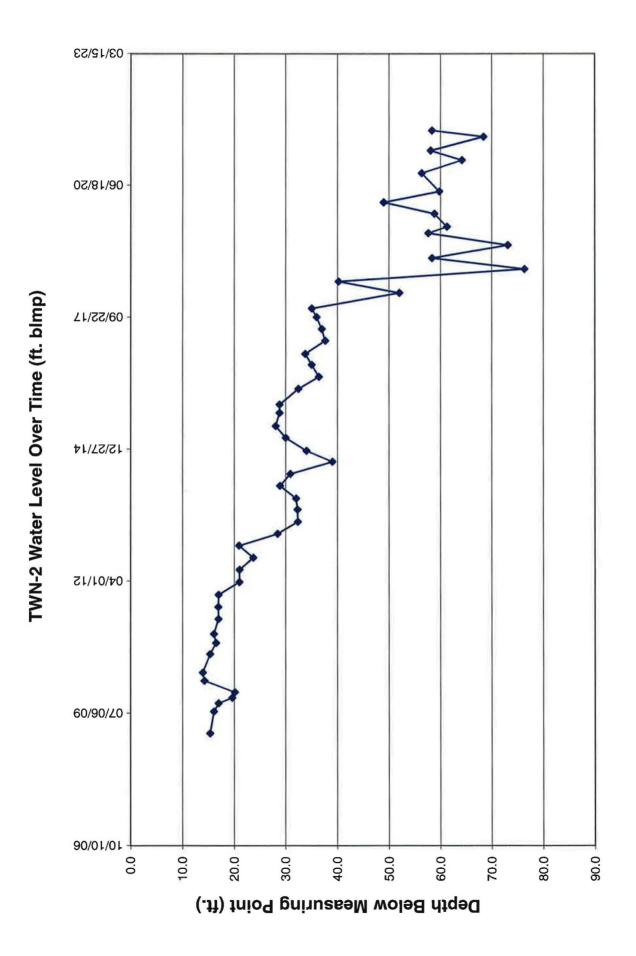
Tab D

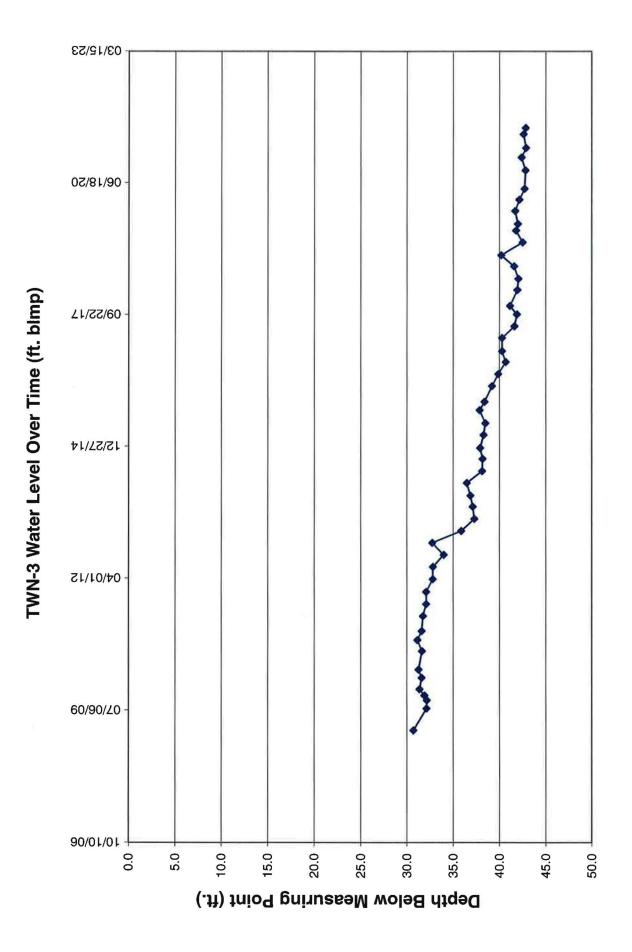
Kriged Previous Quarter Groundwater Contour Map

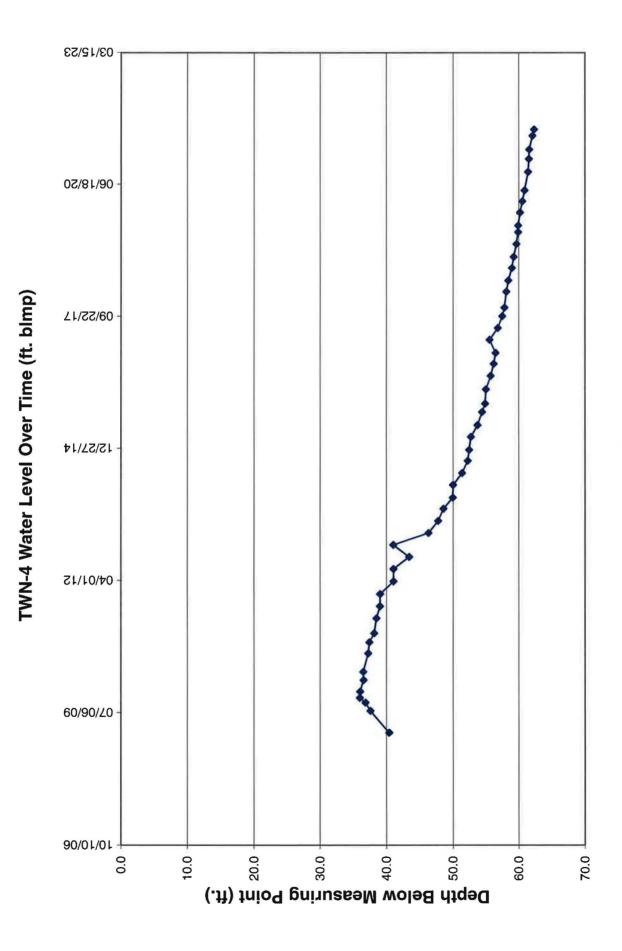
CHEM, INC.

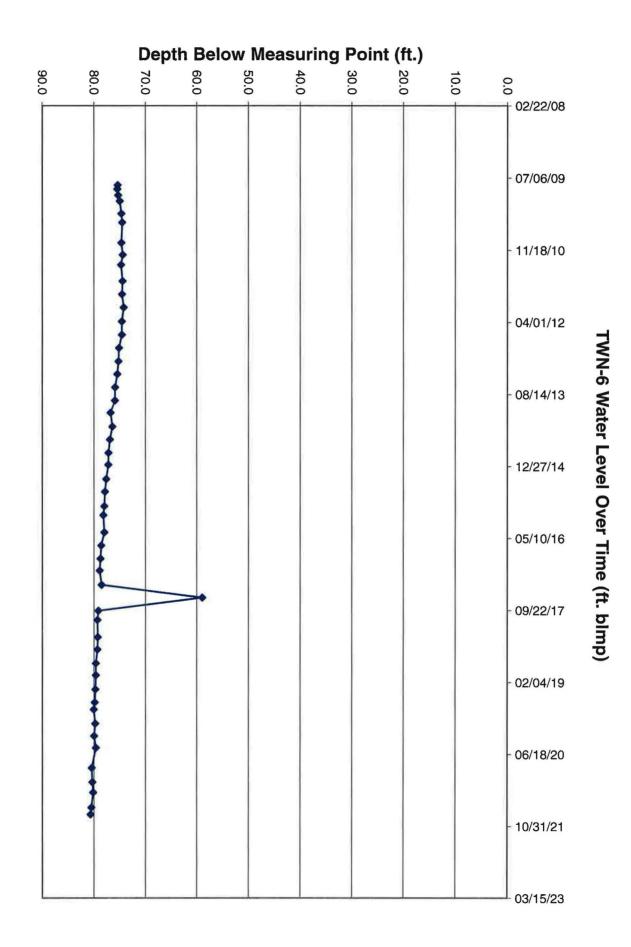
● 5588 elevation in feet amsl

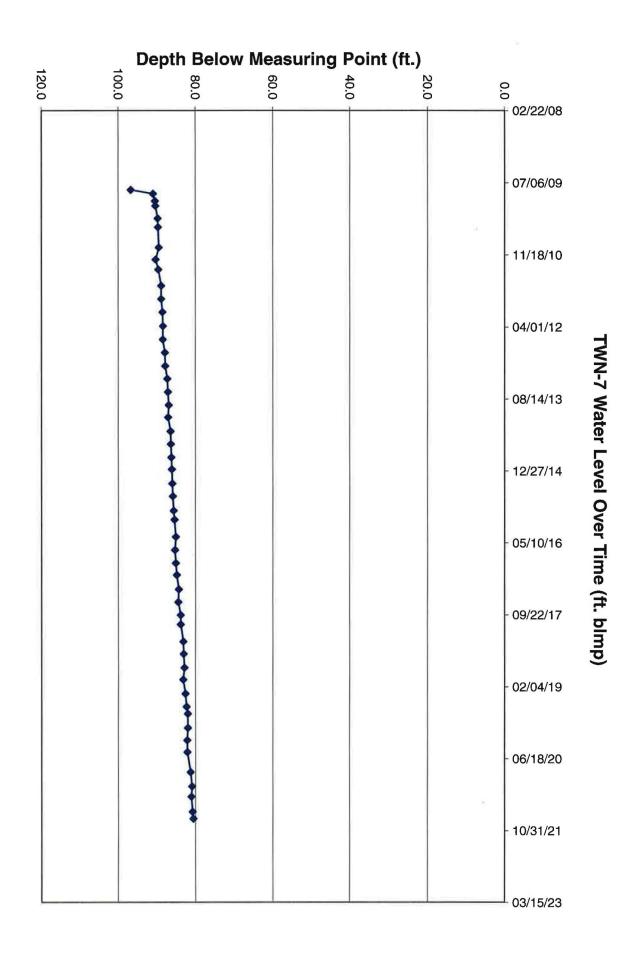

RUIN SPRING

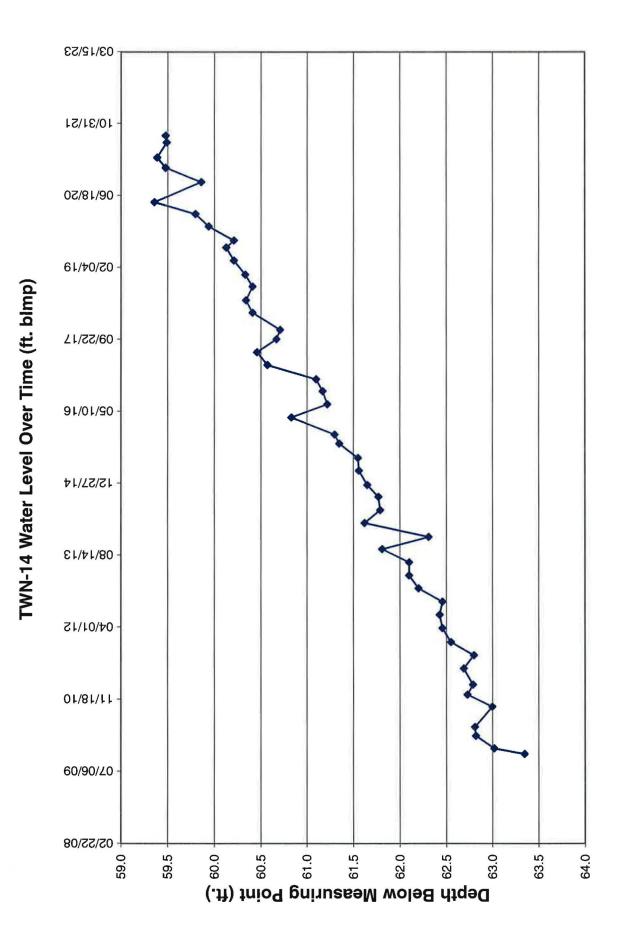

5380 seep or spring showing elevation in feet amsl

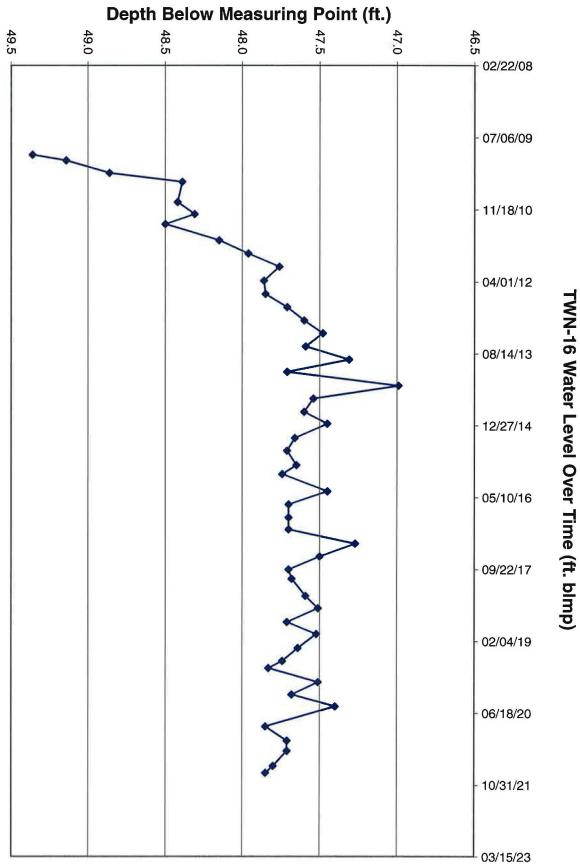

APPROVED DATE REFERENCE FIGURE D-1 H:/718000/aug21/WL/Uwl0621srf

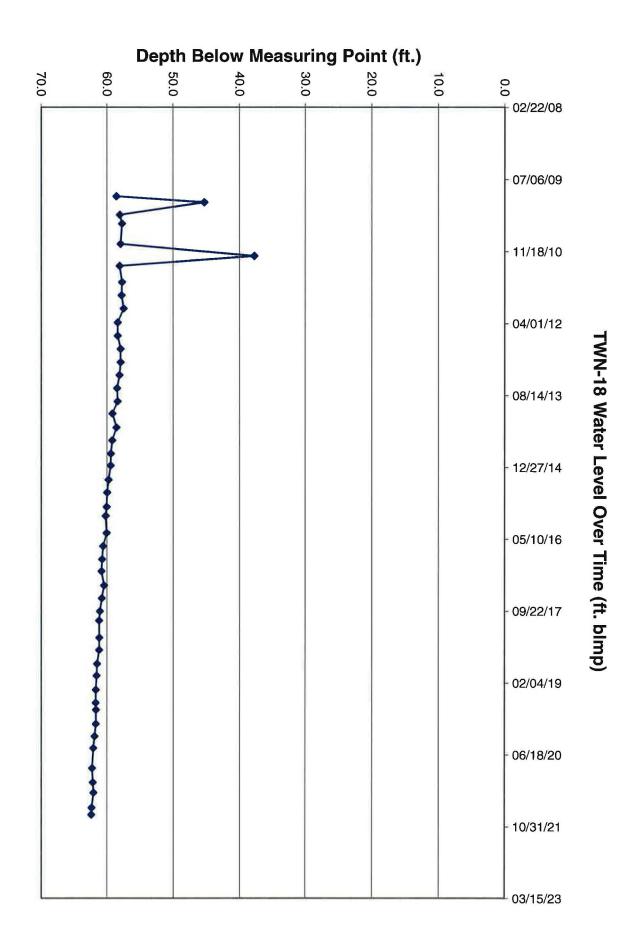

Tab E

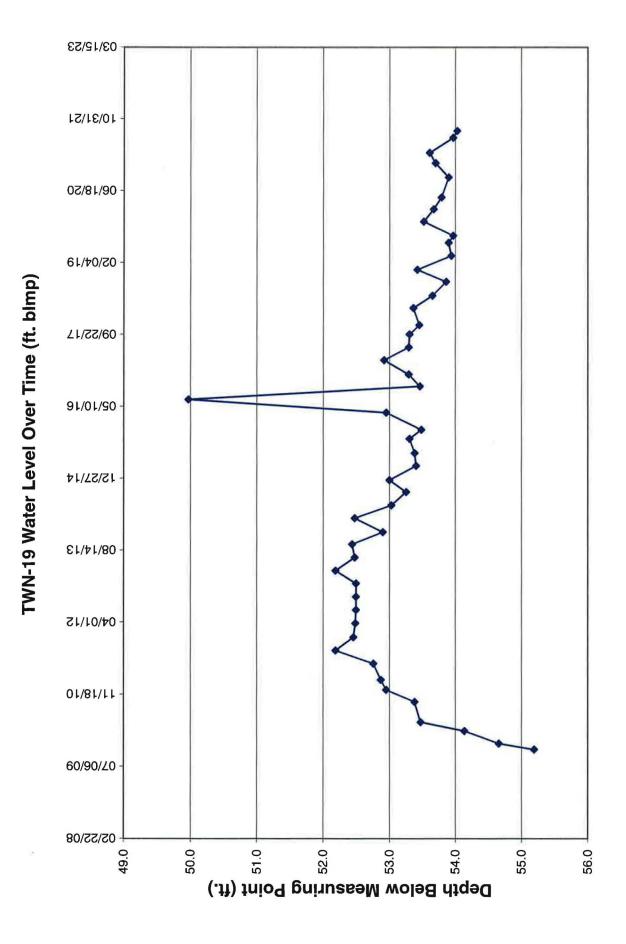

Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells

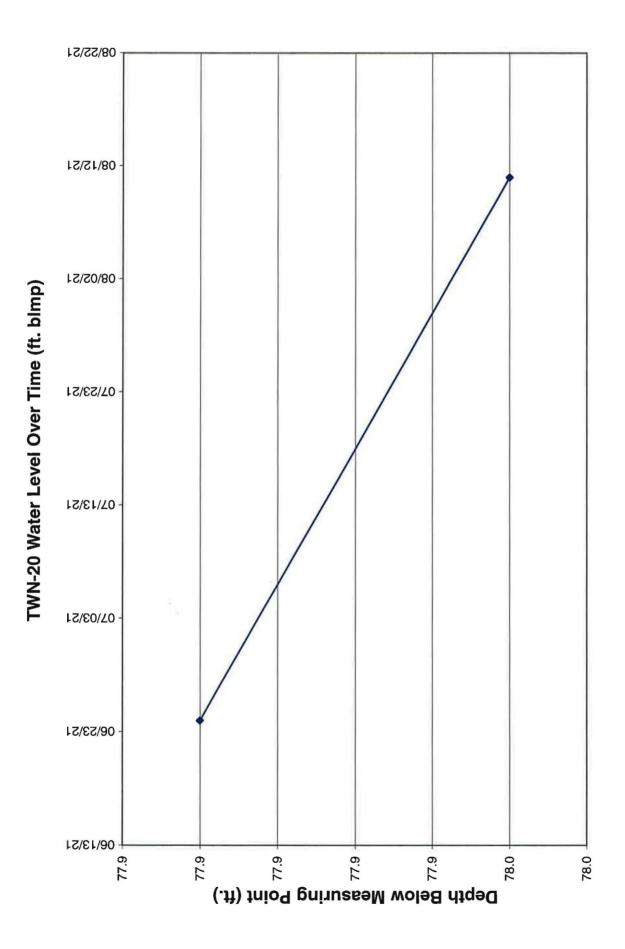


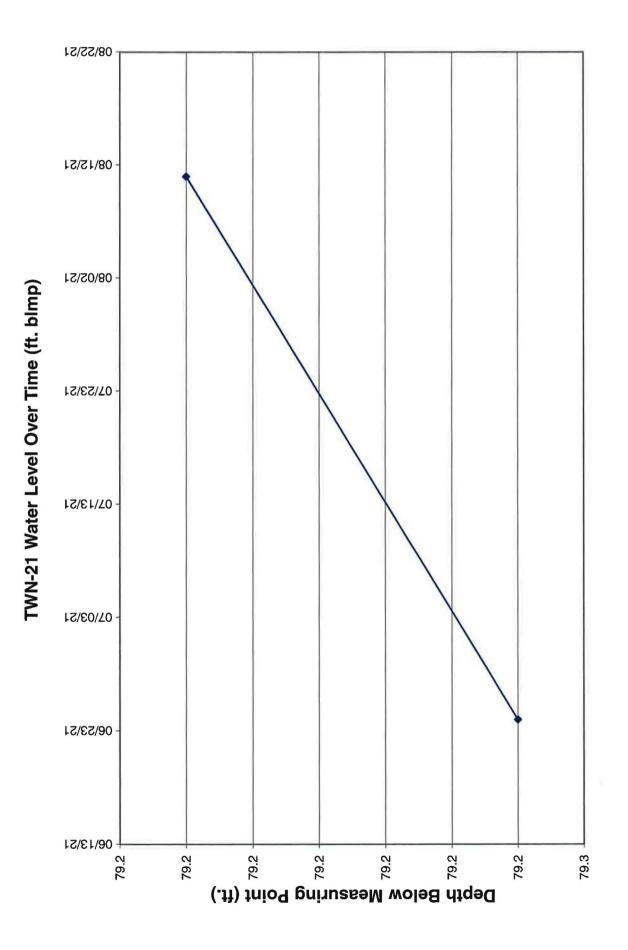


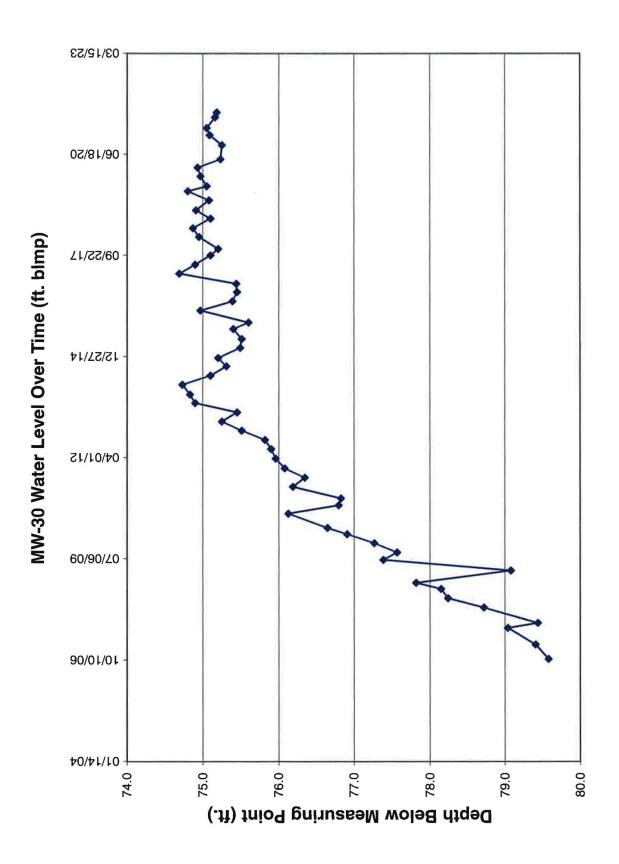


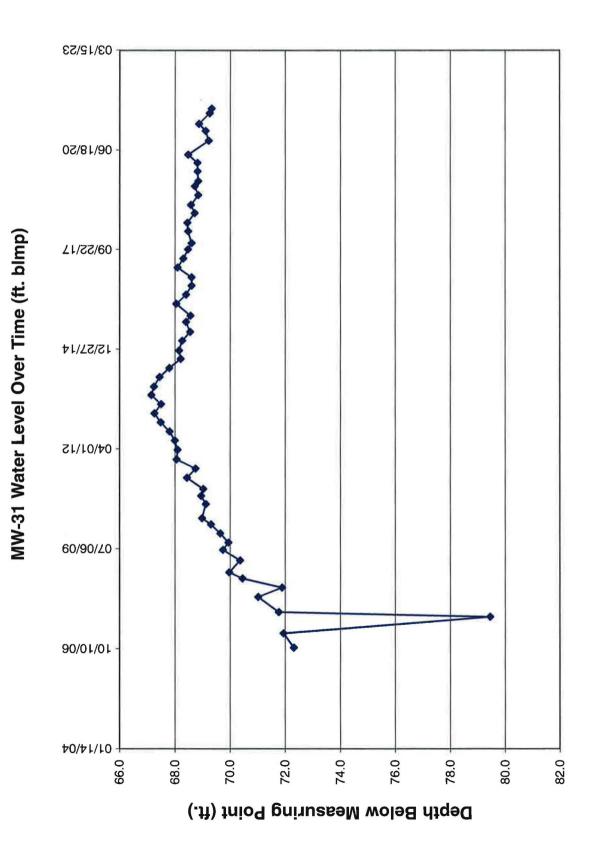












Tab F

Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,646.96	5,648.09	1.13	into into ining	(orining)	(0111202)	106.13
5,600.38	0,01000	0,010105		02/06/09	47.71	46.58	
5,599.99				07/21/09	48.10	46.97	
5,600.26				09/21/09	47.83	46.70	
5,601.10				10/28/09	46.99	45.86	
5,602.59				12/14/09	45.50	44.37	
5,600.55				03/11/10	47.54	46.41	
5,600.66				05/11/10	47.43	46.30	
5,599.18				09/29/10	48.91	47.78	
5,598.92				12/21/10	49.17	48.04	
5,598.29				02/28/11	49.80	48.67	
5,597.80				06/21/11	50.29	49.16	
5,597.32				09/20/11	50.77	49.64	
5,597.15				12/21/11	50.94	49.81	
5,596.54				03/27/12	51.55	50.42	
5,596.52				06/28/12	51.57	50.44	
5,595.03				09/27/12	53.06	51.93	
5,596.62				12/28/12	51.47	50.34	
5,593.54				03/28/13	54.55	53.42	
5,592.38				06/27/13	55.71	54.58	
5,591.65				09/27/13	56.44	55.31	
5,590.34				12/20/13	57.75	56.62	
5,590.03				03/27/14	58.06	56.93	
5,589.09				06/25/14	59.00	57.87	
5,588.15				09/25/14	59.94	58.81	
5,587.74				12/17/14	60.35	59.22	
5,587.09				03/26/15	61.00	59.87	
5,586.79				06/22/15	61.30	60.17	
5,586.39				09/30/15	61.70	60.57	
5,586.05				12/02/15	62.04	60.91	
5,585.89				03/30/16	62.20	61.07	
5,585.30				06/30/16	62.79	61.66	
5,584.95				09/29/16	63.14	62.01	
5,584.55				12/21/16	63.54	62.41	
5,584.74				03/30/17	63.35	62.22	
5,584.29				06/27/17	63.80	62.67	
5,583.77				09/26/17	64.32	63.19	
5,583.44				11/29/17	64.65	63.52	
5,583.03				03/29/18	65.06	63.93	
5,582.79 5,582.22				06/22/18	65.30 65.87	64.17 64.74	
				09/26/18		64.74 64.82	
5,582.14 5,581.49				12/17/18 03/26/19	65.95 66.60	64.82 65.47	
5,581.49 5,581.18				05/26/19 06/24/19	66.91	65.78	
5,581.18				08/13/19	66.97	65.84	
5,581.12				11/19/19	67.16	65.84 66.03	
5,580.95 5,580.54				02/13/20	67.55	66.42	
5,580.54 5,580.24				02/13/20	67.85	66.72	
5,579.73				09/22/20	68.36	67.23	
5,517.15				07122120	00.50	01.25	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,646.96	5,648.09	1.13				106.13
5,579.54				12/30/20	68.55	67.42	
5,579.51				03/11/21	68.58	67.45	
5,578.97				06/24/21	69.12	67.99	
5,578.84				08/11/21	69.25	68.12	

					Total or		
dura verti i		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
-	5,625.75	5,626.69	0.94				95.9
5,611.37				2/6/09	15.32	14.38	
5,610.63				7/21/09	16.06	15.12	
5,609.73				9/21/09	16.96	16.02	
5,607.08				11/2/09	19.61	18.67	
5,606.57				12/14/09	20.12	19.18	
5,612.45				3/11/10	14.24	13.30	
5,612.78				5/11/10	13.91	12.97	
5,611.37				9/29/10	15.32	14.38	
5,610.24				12/21/10	16.45	15.51	
5,610.64				2/28/11	16.05	15.11	
5,609.78				6/21/11	16.91	15.97	
5609.79				9/20/11	16.90	15.96	
5609.72				12/21/11	16.97	16.03	
5,605.69				3/27/12	21.00	20.06	
5,605.67				6/28/12	21.02	20.08	
5,603.03				9/27/12	23.66	22.72	
5,605.76				12/28/12	20.93	19.99	
5,598.28				3/28/13	28.41	27.47	
5,594.32				6/27/13	32.37	31.43	
5,594.38				9/27/13	32.31	31.37	
5,594.68				12/20/13	32.01	31.07	
5,597.79				3/27/14	28.90	27.96	
5,595.80				6/25/14	30.89	29.95	
5,587.67				9/25/14	39.02	38.08	
5,592.66				12/17/14	34.03	33.09	
5,596.71				3/26/15	29.98	29.04	
5,598.64				6/22/15	28.05	27.11	
5,597.89				9/30/15	28.80	27.86	
5,597.89				12/2/15	28.80	27.86	
5,594.25				3/30/16	32.44	31.50	
5,590.26				6/30/16	36.43	35.49	
5,591.67				9/29/16	35.02	34.08	
5592.92				12/21/16	33.77	32.83	
5589.05				3/30/17	37.64	36.7	
5589.69				6/27/17	37.00	36.06	
5590.71				9/26/17	35.98	35.04	
5591.65				11/30/17	35.04	34.10	
5574.69				3/28/18	52.00	51.06	
5586.49				6/22/18	40.20	39.26	
5550.31				9/24/18	76.38	75.44	
5568.32				12/17/18	58.37	57.43	
5553.52				3/25/19	73.17	72.23	
5569.06				6/24/19	57.63	56.69	
5565.38				8/12/19	61.31	60.37	
5567.87				11/18/19	58.82	57.88	
5577.69				2/13/20	49.00	48.06	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.75	5,626.69	0.94				95.9
5566.89				5/5/20	59.80	58.86	
5570.34				9/21/20	56.35	55.41	
5562.46				12/28/20	64.23	63.29	
5568.57				3/11/21	58.12	57.18	
5558.22				6/24/21	68.47	67.53	
5568.34				8/11/21	58.35	57.41	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Measuring			Total or Measured	Total	
Elevation (W1)Length Of (LSD)Date Of Riser (L)Water 	Water	Land	_					Total
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Longth Of	Data Of	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								-
5.603.77 $2/6/09$ 30.73 29.87 $5.602.37$ $7/21/09$ 32.13 31.27 $5.602.34$ $9/21/09$ 32.16 31.30 $5.602.60$ $10/28/09$ 31.90 31.04 $5.602.90$ $31/1/10$ 31.27 30.41 $5.602.290$ $31/1/10$ 31.27 30.41 $5.602.33$ $5/11/10$ 31.27 30.41 $5.602.89$ $2/28/11$ 31.61 30.75 $5.602.40$ $9/29/10$ 31.64 30.78 $5.602.40$ $9/2/2/11$ 31.15 30.29 $5.602.40$ $9/2/2/11$ 31.15 30.29 $5.602.40$ $9/2/11$ 32.10 31.24 $5.601.70$ $32/2/12$ 32.83 31.97 $5.600.50$ $9/2/1/2$ 32.80 31.94 $5.597.18$ $6/2/1/3$ 37.32 36.46 $5.597.60$ $32/2/14$ 38.10 37.44 $5.596.55$ $12/2/13$	(11)				Womtoring		(DIW.LSD)	
5,602.37 $7/21/09$ 32.13 31.27 $5,602.60$ $10/28/09$ 31.90 $5,602.60$ $10/28/09$ 31.90 $5,602.60$ $31/11/10$ 31.60 $5,603.12$ $12/14/09$ 31.38 30.52 $5,602.90$ $3/11/10$ 31.60 30.74 $5,603.23$ $5/11/10$ 31.27 30.41 $5,602.86$ $9/29/10$ 31.64 30.78 $5,602.75$ $6/21/11$ 31.75 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,602.40$ $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,602.40$ $9/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,597.60$ $3/28/13$ 35.90 35.64 $5,597.60$ $3/27/14$ 36.50 35.64 $5,597.60$ $3/27/14$ 36.50 37.34 $5,596.30$ $9/27/13$ 37.14 36.50 $5,596.30$ $9/2/21/4$ 38.16 37.30 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.20$ $3/26/15$ 38.30 39.44 $5,592.60$ $9/2/17$ 41.65 40.30 $5,592.60$ $9/2/17$ 41.95 41.09 $5,592.60$ $9/2/17$ 41.95 </td <td>5 603 77</td> <td>5,055.04</td> <td>5,054.50</td> <td>0.00</td> <td>2/6/09</td> <td>30.73</td> <td>29.87</td> <td>70</td>	5 603 77	5,055.04	5,054.50	0.00	2/6/09	30.73	29.87	70
5,602.34 $9/21/09$ 32.16 31.30 $5,602.60$ $10/28/09$ 31.90 31.04 $5,603.12$ $12/14/09$ 31.38 30.52 $5,602.90$ $3/11/10$ 31.60 30.74 $5,602.86$ $9/2/910$ 31.44 30.78 $5,602.86$ $9/2/910$ 31.44 30.75 $5,602.75$ $6/21/11$ 31.15 30.29 $5,602.75$ $6/21/11$ 31.161 30.75 $5,602.75$ $6/21/11$ 32.10 31.24 $5,602.40$ $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.83 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/11$ 37.132 36.46 $5,597.36$ $9/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.32 36.46 $5,597.36$ $9/27/14$ 36.50 35.64 $5,597.60$ $12/20/13$ 36.90 36.04 $5,596.55$ $12/17/14$ 37.90 37.34 $5,596.52$ $3/2/14$ 38.20 37.34 $5,596.55$ $12/2/15$ 38.50 37.64 $5,596.59$ $9/30/15$ 37.44 $5,596.50$ $9/2/16$ 38.90 39.44 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/2/17$ 41.65 40.71 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.20$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,602.60 $10/28/09$ 31.90 31.04 $5,602.00$ $3/1/1/0$ 31.64 30.74 $5,602.323$ $5/11/10$ 31.27 30.41 $5,602.86$ $9/29/10$ 31.64 30.78 $5,603.35$ $12/21/10$ 31.15 30.29 $5,602.75$ $6/21/11$ 31.75 $5,602.40$ $9/20/11$ 32.10 $5,602.40$ $9/20/11$ 32.10 $5,602.40$ $9/20/11$ 32.10 $5,602.40$ $9/20/11$ 32.10 $5,602.40$ $9/20/11$ 32.10 $5,602.40$ $9/20/11$ 32.10 $3,601.67$ $6/28/12$ 32.83 $3,601.67$ $6/28/12$ 32.83 $3,601.67$ $6/28/12$ 32.76 $3,601.67$ $6/28/13$ 35.90 $3,596.60$ $3/28/13$ 35.90 $3,597.60$ $3/27/14$ 36.90 $3,597.60$ $3/27/14$ 38.16 $5,597.18$ $6/25/14$ 38.16 $5,597.60$ $3/26/15$ 38.30 $3,596.30$ $9/25/14$ 38.16 $3,596.30$ $9/25/14$ 38.16 $5,596.55$ $12/17/4$ 37.99 $5,596.41$ $6/30/16$ 39.21 $3,596.00$ $6/22/15$ 38.30 $3,596.00$ $6/22/15$ 38.30 $3,596.00$ $6/22/15$ 38.30 $3,596.00$ $3/26/15$ 38.30 $3,596.00$ $3/26/15$ 38.30 $3,594.61$ $6/30/16$ 39.29 $3,594.61$ $6/30$								
5,603.12 $12/14/09$ 31.38 30.52 $5,602.90$ $3/11/10$ 31.60 30.74 $5,603.23$ $5/11/10$ 31.64 30.78 $5,602.86$ $9/29/10$ 31.64 30.78 $5,602.86$ $2/28/11$ 31.61 30.75 $5,602.89$ $2/28/11$ 31.61 30.75 $5,602.75$ $6/21/11$ 31.175 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/11$ 37.32 36.46 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.60$ $3/27/13$ 37.14 36.28 $5,597.60$ $3/27/14$ 36.50 36.04 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.55$ $12/17/14$ 37.32 36.44 $5,596.55$ $3/27/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 38.20 37.34 $5,596.50$ $3/26/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 37.89 30.31 $5,596.61$ $9/30/16$ 39.21 38.35 $5,594.60$ $3/27/14$ 40.30 39.44 $5,594.20$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/30/17$ 40.30 39.44								
5,602.90 $3/11/10$ 31.60 30.74 $5,602.86$ $9/29/10$ 31.64 30.78 $5,602.89$ $2/28/11$ 31.15 30.29 $5,602.75$ $6/21/11$ 31.15 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,602.40$ $9/20/11$ 32.10 31.24 $5,602.40$ $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.94 $5,601.67$ $6/28/12$ 32.83 31.94 $5,601.67$ $6/28/12$ 32.83 31.94 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,596.34$ $6/27/14$ 38.16 37.30 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.61$ $9/30/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 38.30 37.44 $5,594.20$ $3/26/15$ 38.30 37.44 $5,594.20$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.69$ $6/27/17$ 41.65 40.79 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
5,603.23 $5/11/10$ 31.27 30.41 $5,602.86$ $9/29/10$ 31.64 30.78 $5,603.35$ $12/21/10$ 31.15 30.29 $5,602.89$ $2/28/11$ 31.61 30.75 $5,602.75$ $6/21/11$ 31.175 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,602.40$ $12/21/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/13$ 37.14 36.46 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,596.30$ $3/27/14$ 38.50 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.61$ $9/30/15$ 37.89 37.34 $5,596.61$ $9/30/15$ 37.89 37.34 $5,596.61$ $9/30/15$ 37.89 37.34 $5,596.61$ $9/30/15$ 37.89 37.34 $5,594.20$ $3/20/16$ 39.21 38.35 $5,594.20$ $3/20/16$ 40.71 39.85 $5,594.20$ $3/20/17$ 41.65 40.79 $5,592.55$ $6/27/17$ 41.65 40.79 $5,592.69$ $9/26/17$ 41.90 41.09 $5,592.60$ $9/26/17$ 41.90 41.09 $5,592.60$ $6/22/18$ 42.05 41.19								
5,602.86 $9/29/10$ 31.64 30.78 $5,602.35$ $12/21/10$ 31.15 30.29 $5,602.75$ $6/21/11$ 31.75 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.70$ $6/28/12$ 32.83 31.97 $5,601.67$ $6/28/12$ 32.83 31.97 $5,601.67$ $6/28/12$ 32.83 31.97 $5,601.67$ $6/28/12$ 32.83 31.97 $5,601.74$ $12/22/12$ 32.76 31.90 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.60$ $3/28/13$ 35.90 35.64 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.30$ $9/27/14$ 38.60 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.61$ $9/30/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,594.20$ $3/20/16$ 39.81 37.55 $5,594.20$ $3/30/16$ 39.81 $5,592.45$ $6/27/17$ 41.65 $5,592.45$ $6/27/17$ 41.65 $5,592.45$ $6/27/17$ 41.65 $5,592.45$ $6/22/18$ 41.00 $5,592.45$ $6/22/18$ 41.00 $5,592.45$ $6/22/18$ 42.05 $5,592.45$ $6/22/18$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,603.35 $12/21/10$ 31.15 30.29 $5,602.89$ $2/28/11$ 31.61 30.75 $5,602.75$ $6/21/11$ 31.75 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,602.40$ $12/21/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5.598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/77/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.16 37.30 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/16$ 39.21 38.35 $5,594.20$ $12/21/16$ 40.30 39.44 $5,592.29$ $3/30/17$ 40.30 39.44 $5,592.29$ $3/26/19$ 41.09 $5.592.45$ $6/27/17$ 41.65 40.79 $5,592.255$ $3/29/18$ 41.09 $5,592.45$ $6/22/18$ 41.09 $5,592.59$ $3/26/19$ 42.5								
5,602.89 $2/28/11$ 31.61 30.75 $5,602.75$ $6/21/11$ 31.75 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,602.40$ $12/21/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/77/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,597.86$ $3/28/13$ 37.92 36.66 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 38.50 37.44 $5,596.54$ $6/25/14$ 38.16 37.30 $5,596.55$ $12/17/14$ 37.55 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/16$ 39.21 38.35 $5,594.20$ $2/21/17$ 41.65 40.79 $5,592.59$ $3/30/17$ 40.30 39.44 $5,592.60$ $9/26/17$ 41.09 $5,592.60$ $9/26/17$ 41.65 $5,594.20$ $2/2/18$ 41.09 $5,592.60$ $9/26/18$ 41.09 $5,592.60$ $9/26/17$ 41.65 $5,592.55$ $3/29/18$ 41.95 $5,592.60$ $6/22/18$ 41.09 $5,592.78$ 41.14 <								
5,602.75 $6/21/11$ 31.75 30.89 $5,602.40$ $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 38.50 35.64 $5,597.60$ $12/20/13$ 36.90 36.04 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.09$ $9/21/15$ 38.50 37.64 $5,596.09$ $12/21/16$ 39.21 38.35 $5,594.20$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.45$ $6/27/17$ 41.65 41.09 $5,592.45$ $6/22/18$ 41.09 $5,592.45$ $6/22/18$ 41.09 $5,592.55$ $3/29/18$ 41.60 40.74 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.60 40.74 $5,592.60$ $9/26/18$								
5,602.40 $9/20/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 37.34 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.20$ $12/2/15$ 38.41 37.55 $5,594.20$ $12/2/16$ 40.30 39.44 $5,592.59$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/18$ 41.99 41.04 $5,592.50$ $6/22/18$ 42.05 41.19 $5,592.50$ $6/24/19$ 41.81 40.95 $5,592.50$ $6/24/19$ 41.81 40.95 $5,592.50$ $6/24/19$ 41.14 $5,592.78$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,602.40 $12/21/11$ 32.10 31.24 $5,601.70$ $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 38.20 37.34 $5,596.30$ $9/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.61$ $9/30/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 38.90 37.64 $5,596.61$ $9/30/15$ 38.90 39.44 $5,595.29$ $3/30/16$ 39.89 $5,591.20$ $12/2/15$ 38.41 37.55 $5,592.29$ $3/30/16$ 39.21 38.35 $5,594.20$ $12/2/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.90$ $9/26/18$ 41.99 41.61 $5,592.50$ $8/13/19$ 42.200 41.14 $5,592.50$ $8/13/19$ 42.200 41.14 $5,592.78$ <								
5,601.70 $3/27/12$ 32.80 31.94 $5,601.67$ $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.20$ $3/26/15$ 38.50 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.60$ $9/26/18$ 41.60 40.74 $5,592.60$ $9/26/18$ 41.60 40.74 $5,592.60$ $9/26/18$ 41.60 40.74 $5,592.60$ $9/26/18$ 41.60 40.74 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
5,601.67 $6/28/12$ 32.83 31.97 $5,600.50$ $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.14 36.28 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,596.30$ $3/27/14$ 36.50 35.64 $5,596.30$ $9/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.50$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.30 37.44 $5,596.09$ $12/2/15$ 38.30 37.44 $5,596.09$ $12/2/15$ 38.30 37.44 $5,596.09$ $12/2/15$ 38.30 37.44 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.20$ $3/30/17$ 40.30 39.44 $5,592.45$ $6/27/17$ 41.65 40.79 $5,592.45$ $6/27/17$ 41.65 40.79 $5,592.45$ $6/22/18$ 41.09 $5,592.45$ $6/22/18$ 41.09 $5,592.45$ $6/22/18$ 41.60 40.74 $5,592.50$ $8/31/9$ 42.50 $5,592.50$ $8/21/9$ 41.14 $5,592.50$ $8/21/9$ 41.14 $5,$								
5,600.50 $9/27/12$ 34.00 33.14 $5,601.74$ $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.55$ $12/2/15$ 38.30 37.44 $5,596.60$ $6/22/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $3/30/17$ 40.30 39.44 $5,594.20$ $3/30/17$ 41.03 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.45$ $6/22/18$ 41.09 41.04 $5,592.45$ $6/22/18$ 41.60 40.74 $5,592.50$ $8/31/9$ $3/26/19$ 42.11 39.35 $5,592.60$ $6/24/19$ 41.81 40.95 $5,592.60$ $8/33/19$ 42.00 41.14 $5,592.50$ $8/31/919$ 42.00 $41.$								
5,601.74 $12/28/12$ 32.76 31.90 $5,598.60$ $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.60$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.50$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.00$ $12/2/15$ 38.41 37.55 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,594.20$ $12/2/15$ 38.41 37.55 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $12/21/16$ 40.30 39.44 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.60$ $9/26/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.70$ $8/33/9$ 40.95 $5,592.78$ $11/19/19$ 41.72 40.86								
5,598.60 $3/28/13$ 35.90 35.04 $5,597.18$ $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/27/17$ 41.65 40.79 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.60$ $8/24/19$ 41.81 40.95 $5,592.60$ $8/24/19$ 41.65 $5,592.60$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,597.18 $6/27/13$ 37.32 36.46 $5,597.36$ $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.30$ $9/25/14$ 38.20 37.44 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.01$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.71 39.85 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.85$ $6/22/18$ 41.09 $5,592.45$ $6/22/18$ 41.09 $5,592.45$ $6/22/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.70$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 <								
5,597.36 $9/27/13$ 37.14 36.28 $5,597.60$ $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.50$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.09$ $12/2/15$ 38.41 37.55 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.90$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,597.60 $12/20/13$ 36.90 36.04 $5,598.00$ $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,598.00 $3/27/14$ 36.50 35.64 $5,596.34$ $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.30 37.44 $5,596.01$ $9/30/15$ 37.89 37.03 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.71 39.85 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.85$ $6/27/17$ 41.90 41.04 $5,592.33$ $11/29/17$ 41.17 40.31 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.45$ $6/22/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.34 $6/25/14$ 38.16 37.30 $5,596.30$ $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.01$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.71 39.85 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.59$ $3/26/19$ 42.51 41.65 $5,592.60$ $9/26/18$ 41.60 40.74 $5,592.50$ $3/29/18$ 41.95 41.09 $5,592.50$ $9/26/18$ 42.05 41.19 $5,592.69$ $6/24/19$ 42.51 41.65 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.30 $9/25/14$ 38.20 37.34 $5,596.55$ $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.61$ $6/30/16$ 39.89 39.03 $5,594.20$ $12/21/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $9/26/19$ 42.51 41.65 $5,592.90$ $6/24/19$ 41.81 40.95 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.55 $12/17/14$ 37.95 37.09 $5,596.20$ $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,593.79$ $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.20 $3/26/15$ 38.30 37.44 $5,596.00$ $6/22/15$ 38.50 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,593.79$ $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.09 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.00 $6/22/15$ 38.50 37.64 $5,596.61$ $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,593.79$ $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.61 $9/30/15$ 37.89 37.03 $5,596.09$ $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,593.79$ $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,596.09 $12/2/15$ 38.41 37.55 $5,595.29$ $3/30/16$ 39.21 38.35 $5,594.61$ $6/30/16$ 39.89 39.03 $5,593.79$ $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.69$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
5,594.61 $6/30/16$ 39.89 39.03 $5,593.79$ $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,593.33$ $11/29/17$ 41.17 40.31 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,594.29$ $12/18/18$ 40.21 39.35 $5,591.99$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,593.79 $9/29/16$ 40.71 39.85 $5,594.20$ $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,593.33$ $11/29/17$ 41.17 40.31 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $9/26/18$ 41.60 40.74 $5,592.90$ $3/26/19$ 42.51 41.65 $5,591.99$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,594.20 $12/21/16$ 40.30 39.44 $5,594.20$ $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,593.33$ $11/29/17$ 41.17 40.31 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,594.29$ $12/18/18$ 40.21 39.35 $5,591.99$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,594.20 $3/30/17$ 40.30 39.44 $5,592.85$ $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,593.33$ $11/29/17$ 41.17 40.31 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,594.29$ $12/18/18$ 40.21 39.35 $5,591.99$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
5,592.85 $6/27/17$ 41.65 40.79 $5,592.60$ $9/26/17$ 41.90 41.04 $5,593.33$ $11/29/17$ 41.17 40.31 $5,592.55$ $3/29/18$ 41.95 41.09 $5,592.45$ $6/22/18$ 42.05 41.19 $5,592.90$ $9/26/18$ 41.60 40.74 $5,594.29$ $12/18/18$ 40.21 39.35 $5,591.99$ $3/26/19$ 42.51 41.65 $5,592.69$ $6/24/19$ 41.81 40.95 $5,592.50$ $8/13/19$ 42.00 41.14 $5,592.78$ $11/19/19$ 41.72 40.86								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
5,592.909/26/1841.6040.745,594.2912/18/1840.2139.355,591.993/26/1942.5141.655,592.696/24/1941.8140.955,592.508/13/1942.0041.145,592.7811/19/1941.7240.86								
5,594.2912/18/1840.2139.355,591.993/26/1942.5141.655,592.696/24/1941.8140.955,592.508/13/1942.0041.145,592.7811/19/1941.7240.86								
5,591.993/26/1942.5141.655,592.696/24/1941.8140.955,592.508/13/1942.0041.145,592.7811/19/1941.7240.86								
5,592.696/24/1941.8140.955,592.508/13/1942.0041.145,592.7811/19/1941.7240.86								
5,592.508/13/1942.0041.145,592.7811/19/1941.7240.86								
5,592.78 11/19/19 41.72 40.86								
5,592.33 2/13/20 42.17 41.31								
	5,592.33				2/13/20	42.17	41.31	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,591.78				5/5/20	42.72	41.86	
5,591.67				9/22/20	42.83	41.97	
5,592.09				12/30/20	42.41	41.55	
5,591.62				3/11/21	42.88	42.02	
5,591.89				6/24/21	42.61	41.75	
5,591.66				8/11/21	42.84	41.98	

Water Intensuring Measured (MP) Intensition Intensition <thintensition< th=""> <thintensition< th=""> <th< th=""><th></th><th></th><th></th><th></th><th></th><th>Total or</th><th></th><th></th></th<></thintensition<></thintensition<>						Total or		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Measuring			Measured	Total	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(WL)				Monitoring	(blw.MP)	(blw.LSD)	
5.604.26 $7/21/09$ 37.61 36.78 $5.605.02$ $9/21/09$ 36.83 36.02 $5.605.81$ $12/14/09$ 36.06 35.23 $5.605.81$ $12/14/09$ 36.66 35.23 $5.605.36$ $5/11/10$ 36.51 35.68 $5.605.36$ $5/11/10$ 37.28 36.45 $5.603.36$ $9/29/10$ 37.28 36.45 $5.603.36$ $6/21/11$ 38.18 37.35 $5.603.36$ $6/21/11$ 38.51 37.68 $5.602.82$ $9/20/11$ 39.05 38.22 $5.602.82$ $9/20/11$ 39.05 38.25 $5.600.84$ $6/28/12$ 41.05 40.22 $5.600.84$ $6/28/12$ 41.03 40.22 $5.600.84$ $6/28/12$ 41.03 40.22 $5.600.86$ $12/28/12$ 41.04 42.57 $5.600.86$ $12/28/12$ 41.04 42.57 $5.600.86$ $12/28/12$ 41.01 40.18 $5.595.57$ $3/27/13$ 46.30 45.47 $5.594.12$ $6/27/13$ 47.75 46.92 $5.591.92$ $12/20/13$ 49.59 49.12 $5.591.92$ $12/20/13$ 49.59 49.12 $5.591.92$ $12/20/13$ 49.59 51.62 $5.587.02$ 52.70 51.87 52.70 $5.587.02$ 52.70 51.87 53.62 $5.587.02$ 52.70 51.87 53.22 5585.42 $12/21/16$ 56.45 55.62 <td< th=""><th></th><th>5,641.04</th><th>5,641.87</th><th>0.83</th><th></th><th></th><th></th><th>126.4</th></td<>		5,641.04	5,641.87	0.83				126.4
5,605.02 $9/21/09$ 36.85 36.02 $5,605.87$ $1028/09$ 36.06 35.17 $5,605.81$ $12/14/09$ 36.06 35.23 $5,605.31$ $371/1/0$ 36.56 35.73 $5,604.59$ $9/29/10$ 37.28 36.45 $5,604.42$ $12/21/10$ 37.45 36.62 $5,604.42$ $12/21/10$ 37.45 36.62 $5,603.69$ $228/11$ 38.18 37.35 $5,603.36$ $6/21/11$ 39.08 38.22 $5,602.82$ $9/20/11$ 39.08 38.25 $5,600.84$ $6/28/12$ 41.03 40.20 $5,500.84$ $6/28/12$ 41.03 40.20 $5,500.84$ $6/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/14$ 50.02 49.19 $5,591.85$ $3/27/14$ 50.02 49.19 $5,591.85$ $3/27/14$ 50.02 49.19 $5,591.85$ $3/27/14$ 50.02 49.19 $5,591.85$ $3/27/14$ 50.02 49.19 $5,593.17$ $3/26/15$ 53.70 52.87 $5,589.17$ $3/26/15$ 52.70 51.87 $5,589.17$ $3/26/15$ 52.70 51.87 $5,589.17$ $3/26/15$ 52.70 51.87 $5,589.17$ $6/22/15$ 53.70 52.87 $5,588.17$ <t< td=""><td>5,601.47</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5,601.47							
5,605.87 $10/28/09$ 36.00 35.17 $5,605.31$ $21/4/09$ 36.06 35.23 $5,605.36$ $5/11/10$ 36.51 35.68 $5,604.59$ $9/29/10$ 37.28 36.62 $5,604.42$ $12/21/10$ 37.45 36.62 $5,603.69$ $2/28/11$ 38.18 37.35 $5,603.36$ $621/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.05 38.22 $5,602.79$ $12/21/11$ 39.08 38.25 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.92$ $12/20/13$ 49.54 49.12 $5,591.92$ $12/20/13$ 49.54 49.12 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.64$ $9/25/14$ 51.28 56.55 $5,588.17$ $6/30/15$ 52.70 51.87 $5,588.17$ $6/30/15$ 54.39 53.56 $5,587.02$ $12/21/16$ 56.45 55.62 5585.72 $9/29/16$ 56.15 55.32 5584.41 $9/26/17$ 57.46 55.95 5584.41 $9/26/17$ 57.46 56.63 <tr< td=""><td>5,604.26</td><td></td><td></td><td></td><td>7/21/09</td><td></td><td></td><td></td></tr<>	5,604.26				7/21/09			
5,605.81 $12/14/09$ 36.06 35.23 $5,605.31$ $3111/10$ 36.51 35.68 $5,604.59$ $9/29/10$ 37.28 36.45 $5,604.42$ $12/21/10$ 37.45 36.62 $5,603.69$ $2/28/11$ 38.18 37.35 $5,603.36$ $6/21/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.08 38.22 $5,602.82$ $9/20/11$ 39.08 38.25 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.84$ $6/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/14$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,591.85$ $3/27/14$ 50.02 49.19 $5,594.42$ $12/20/13$ 49.95 49.12 $5,589.64$ $9/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 51.38 51.62 $5,587.02$ $12/21/5$ 54.85 54.02 $5,587.02$ $12/21/16$ 56.45 55.62 5585.72 $9/29/16$ 56.15 55.32 5585.72 $9/29/16$ 56.15 55.32 5584.41 $9/26/17$ 57.46 56.67 5585.72 $9/29/16$ 56.15 55.32 5585.72 $9/29/16$ 56.15 55.32 5	5,605.02				9/21/09			
5,605.31 $3/11/10$ 36.56 35.73 $5,604.59$ $9/29/10$ 37.28 36.45 $5,604.42$ $12/21/10$ 37.45 36.62 $5,603.69$ $2/28/11$ 38.18 37.35 $5,603.36$ $6/21/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.08 38.25 $5,600.84$ $6/28/12$ 41.03 40.22 $5,600.84$ $6/28/12$ 41.03 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,595.77$ $3/28/13$ 46.30 45.47 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/14$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.59 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.17$ $3/26/15$ 52.70 51.87 $5,587.02$ $12/2/15$ 53.70 51.87 $5,587.12$ $9/20/16$ 56.15 55.32 5587.02 $12/2/15$ 54.85 54.02 $5,587.02$ $12/2/17$ 57.85 54.69 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $12/2/17$ 57.87 55.25 5584.41 $9/26/17$ 57.46 55.62 5585.72 $9/29/16$ 56.15 55.32 5	5,605.87				10/28/09	36.00	35.17	
5,605.36 $5/11/10$ 36.51 35.68 $5,604.59$ $9/29/10$ 37.28 36.45 $5,604.42$ $12/21/10$ 37.45 36.62 $5,603.36$ $2/28/11$ 38.18 37.35 $5,603.36$ $6/21/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.05 38.22 $5,602.79$ $12/21/11$ 39.06 38.22 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 41.04 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 48.54 47.71 $5,591.85$ $3/27/14$ 50.02 49.12 $5,591.85$ $3/27/14$ 50.02 49.12 $5,591.85$ $3/27/14$ 50.02 49.12 $5,591.85$ $3/27/14$ 50.02 49.12 $5,589.64$ $9/25/14$ 52.23 51.87 $5,589.64$ $9/25/14$ 52.70 51.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.2$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 54.85 54.02 5585.42 $12/21/16$ 54.85 54.02 5585.42 $12/21/16$ 54.86 55.95 5584.41 $9/26/17$ 57.46 56.63 5585.42 $12/21/16$ 54.86 55.95 5584.41 $9/26/17$ 57.46 56.63 5	5,605.81				12/14/09	36.06	35.23	
5,604.59 $9/29/10$ 37.28 36.45 $5,603.69$ $2/28/11$ 38.18 37.35 $5,603.36$ $6/21/11$ 38.15 37.58 $5,602.82$ $9/20/11$ 39.05 38.22 $5,602.79$ $12/21/11$ 39.08 38.25 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.42 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,591.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.92$ $12/20/13$ 49.55 49.12 $5,591.92$ $12/20/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 51.62 55.57 $5,589.64$ $9/25/14$ 51.38 50.55 $5,589.72$ $9/29/16$ 54.37 54.22 $5,587.02$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,587.02$ $9/2/17$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.42 $12/21/16$ 56.45 55.62 <t< td=""><td>5,605.31</td><td></td><td></td><td></td><td>3/11/10</td><td>36.56</td><td>35.73</td><td></td></t<>	5,605.31				3/11/10	36.56	35.73	
5,604.42 $12/21/10$ 37.45 36.62 $5,603.69$ $2/28/11$ 38.18 37.35 $5,603.60$ $6/21/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.05 38.22 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.93$ $3/27/14$ 50.02 49.19 $5,591.94$ $9/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 51.38 50.55 $5,589.74$ $9/25/14$ 51.38 50.55 $5,589.74$ $9/20/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/21/5$ 53.70 52.87 $5,585.72$ $9/29/16$ 56.15 55.62 5585.69 $3/20/16$ 56.45 55.62 5585.42 $12/21/16$ 56.45 55.62 5585.42 $12/21/17$ 56.78 55.95 5584.41 $9/26/17$ 57.80 56.97 5583.47 $6/22/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5	5,605.36				5/11/10	36.51	35.68	
5,603.69 $2/28/11$ 38.18 37.35 $5,603.36$ $6/21/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.05 38.22 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $9/29/16$ 56.15 55.32 5586.35 $3/30/17$ 55.52 54.69 5587.61 $9/29/16$ 56.15 55.32 5588.42 $12/21/16$ 56.45 55.62 5588.635 $3/30/17$ 55.52 54.69 5588.635 $3/30/17$ 55.52 54.69 5588.72 $9/29/16$ 56.15 55.32 5584.41 $9/26/17$ 57.46 56.63 5	5,604.59				9/29/10	37.28	36.45	
5,603.36 $6/21/11$ 38.51 37.68 $5,602.82$ $9/20/11$ 39.05 38.22 $5,602.82$ $9/20/11$ 39.08 38.25 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,595.57$ $3/28/13$ 46.30 45.47 $5,591.85$ $3/27/14$ 50.02 49.12 $5,591.85$ $3/27/14$ 50.02 49.12 $5,591.85$ $3/27/14$ 50.02 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.42$ $12/21/15$ 52.70 51.87 $5,587.48$ $9/30/15$ 52.70 51.87 $5,587.02$ $12/21/5$ 54.39 53.56 $5,587.02$ $12/21/5$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.62 558.62 5586.35 $3/30/17$ 55.52 54.69 5585.42 $12/21/16$ 56.45 55.62 5586.47 $9/26/17$ 57.46 56.63 5587.62 $9/29/18$ 58.11 5583.47 $6/22/18$ 58.41 5584.47 $6/22/17$ 57.46 56.63 5584.47 $6/22/18$ <td< td=""><td>5,604.42</td><td></td><td></td><td></td><td>12/21/10</td><td>37.45</td><td>36.62</td><td></td></td<>	5,604.42				12/21/10	37.45	36.62	
5,602.82 $9/20/11$ 39.05 38.22 $5,602.79$ $12/21/11$ 39.08 38.25 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,591.85$ $3/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 51.38 50.55 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.43$ $9/30/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.72$ $9/29/16$ 56.15 55.32 5585.72 $9/29/16$ 56.15 55.32 5585.72 $9/29/16$ 56.15 55.32 5585.74 $12/21/7$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5585.72 $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5585.75 $3/30/17$ 57.76 55.95 5584.41 $9/26/17$ 57.46 56.63 5585	5,603.69				2/28/11	38.18	37.35	
5,602.79 $12/21/11$ 39.08 38.25 $5,600.82$ $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.62 $5,589.72$ $12/20/15$ 53.70 52.87 $5,589.17$ $3/26/15$ 53.70 52.87 $5,587.02$ $12/2/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.39 53.56 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5586.18 $6/27/17$ 57.46 56.63 5585.09 $6/27/17$ 57.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5585.09 $6/27/17$ 57.88 59.95 5584.41 $9/26/17$ 57.46 56.63 5585.09 $6/27/17$ 57.88 55.95 5584.41 $9/26/17$ 57.46 56.63 5585.09 $6/27/17$ 57.88 55.95 5584	5,603.36				6/21/11	38.51	37.68	
5,600.82 $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,591.412$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,587.02$ $12/2/15$ 54.39 53.56 $5,587.02$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/17$ 57.86 55.62 5585.09 $6/2717$ 57.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.12 5583.66 1	5,602.82				9/20/11	39.05	38.22	
5,600.82 $3/27/12$ 41.05 40.22 $5,600.84$ $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,591.412$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/20/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 53.70 52.87 $5,587.02$ $3/20/16$ 54.97 54.48 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/17$ 57.86 56.97 5585.09 $6/27/17$ 57.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5585.09 $6/27/17$ 57.86 56.97 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5583.47 $6/27/17$ 57.46 56.63 55					12/21/11	39.08	38.25	
5,600.84 $6/28/12$ 41.03 40.20 $5,598.47$ $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,88.64$ $9/25/14$ 51.38 50.55 $5,88.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.43$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 53.70 51.87 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $9/29/16$ 56.15 55.32 586.18 $6/30/16$ 55.69 54.86 $5,587.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.92 $9/26/18$ 58.95 58.12 5582.93					3/27/12	41.05	40.22	
5,598.47 $9/27/12$ 43.40 42.57 $5,600.86$ $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 53.70 52.87 $5,589.17$ $3/20/15$ 54.39 53.56 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.80 56.97 5583.76 $3/29/18$ 58.11 57.27 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5581.97 $6/2/19$ 59.04 58.81 5581.96 $3/30/17$ 59.21 58.38 $5582.$					6/28/12	41.03	40.20	
5,600.86 $12/28/12$ 41.01 40.18 $5,595.57$ $3/28/13$ 46.30 45.47 $5,591.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,587.02$ $12/2/15$ 54.85 54.02 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.42 $12/21/16$ 56.45 55.62 5585.42 $12/21/16$ 56.45 55.62 5585.42 $3/20/18$ 88.11 57.28 5584.41 $9/26/17$ 57.46 56.97 5583.47 $6/27/17$ 57.80 56.97 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 88.95 58.12 5582.92 $9/26/18$ 58.95 58.12 5581.96 $3/26/19$ 59.94 58.31 $5581.$							42.57	
5,595.57 $3/28/13$ 46.30 45.47 $5,594.12$ $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,581.71$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5586.35 $3/30/17$ 55.52 54.69 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.72 $9/26/17$ 57.46 56.63 5585.79 $6/27/17$ 57.88 56.97 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5582.92 $9/26/18$ 58.95 58.12 5582.92 $9/26/18$ 58.95 58.12 5581.96 $8/13/19$ 59.90 59.07 5581.96								
5,594.12 $6/27/13$ 47.75 46.92 $5,593.33$ $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 53.70 52.87 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.486 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5584.41 $9/26/17$ 57.80 56.97 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5582.62 $9/26/18$ 58.95 58.12 5583.47 $6/22/18$ 58.40 57.57 5582.63 $3/20/19$ 59.00 59.07 5581.68 $12/18/18$ 59.21 58.38 5582.6								
5,593.33 $9/27/13$ 48.54 47.71 $5,591.92$ $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.02$ $12/2/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5585.09 $6/27/17$ 57.86 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.92 $9/26/18$ 59.21 58.38 5582.93 $3/26/19$ 59.46 58.81 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,591.92 $12/20/13$ 49.95 49.12 $5,591.85$ $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.23 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.02$ $12/2/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.39 53.56 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5585.99 $6/27/17$ 57.46 56.63 5584.07 $11/29/17$ 57.80 56.97 5584.07 $11/29/17$ 57.80 56.97 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5582.92 $9/26/18$ 58.95 5582.92 $9/26/18$ 58.95 5582.92 $9/26/18$ 58.95 5582.93 $3/26/19$ 59.64 5581.97 $6/24/19$ 59.90 5581.96 $8/13/19$ 59.91 5581.96 $8/13/19$ 59.91 5581.68 $11/19/19$ 60.19 59.36								
5,591.85 $3/27/14$ 50.02 49.19 $5,590.49$ $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.41 $9/26/17$ 57.46 56.63 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.12 5583.76 $3/26/19$ 59.64 58.81 5582.92 $9/26/18$ 58.95 58.12 5582.93 $3/26/19$ 59.64 58.81 5581.96 $8/13/19$ 59.91 59.08 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,590.49 $6/25/14$ 51.38 50.55 $5,589.64$ $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.41 $9/26/17$ 57.46 56.63 5584.41 $9/26/17$ 57.46 56.63 5584.41 $9/26/17$ 57.46 56.67 5584.41 $9/26/17$ 57.46 56.97 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,589.64 $9/25/14$ 52.23 51.40 $5,589.42$ $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.22 54.69 5585.09 $6/27/17$ 57.86 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.10 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,589.42 $12/17/14$ 52.45 51.62 $5,589.17$ $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5585.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,589.17 $3/26/15$ 52.70 51.87 $5,588.17$ $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,588.17 $6/22/15$ 53.70 52.87 $5,587.48$ $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,587.48 $9/30/15$ 54.39 53.56 $5,587.02$ $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,587.02 $12/2/15$ 54.85 54.02 $5,586.90$ $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.40 57.57 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.68 $8/13/19$ 59.21 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,586.90 $3/20/16$ 54.97 54.14 $5,586.18$ $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.68 $11/19/19$ 60.19 59.36								
5,586.18 $6/30/16$ 55.69 54.86 $5,585.72$ $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5587.09 $6/27/17$ 57.80 56.97 5584.07 $11/29/17$ 57.80 56.97 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
5,585.72 $9/29/16$ 56.15 55.32 5585.42 $12/21/16$ 56.45 55.62 5586.35 $3/30/17$ 55.52 54.69 5585.09 $6/27/17$ 56.78 55.95 5584.41 $9/26/17$ 57.46 56.63 5584.07 $11/29/17$ 57.80 56.97 5583.76 $3/29/18$ 58.11 57.28 5583.47 $6/22/18$ 58.40 57.57 5582.92 $9/26/18$ 58.95 58.12 5582.66 $12/18/18$ 59.21 58.38 5582.23 $3/26/19$ 59.64 58.81 5581.97 $6/24/19$ 59.90 59.07 5581.96 $8/13/19$ 59.91 59.08 5581.68 $11/19/19$ 60.19 59.36								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
5584.419/26/1757.4656.635584.0711/29/1757.8056.975583.763/29/1858.1157.285583.476/22/1858.4057.575582.929/26/1858.9558.125582.6612/18/1859.2158.385582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5584.0711/29/1757.8056.975583.763/29/1858.1157.285583.476/22/1858.4057.575582.929/26/1858.9558.125582.6612/18/1859.2158.385582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5583.763/29/1858.1157.285583.476/22/1858.4057.575582.929/26/1858.9558.125582.6612/18/1859.2158.385582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5583.476/22/1858.4057.575582.929/26/1858.9558.125582.6612/18/1859.2158.385582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5582.929/26/1858.9558.125582.6612/18/1859.2158.385582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5582.6612/18/1859.2158.385582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5582.233/26/1959.6458.815581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5581.976/24/1959.9059.075581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5581.968/13/1959.9159.085581.6811/19/1960.1959.36								
5581.68 11/19/19 60.19 59.36								
5581.34 2/13/20 60.53 59.70								
	5581.34				2/13/20	60.53	59.70	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
0	5,641.04	5,641.87	0.83				126.4
5580.99				5/5/20	60.88	60.05	
5580.45				9/22/20	61.42	60.59	
5580.34				12/30/20	61.53	60.70	
5580.29				3/11/21	61.58	60.75	
5579.8				6/24/21	62.07	61.24	
5579.55				8/11/21	62.32	61.49	

Measuring Measured Surface Joint Elevation Land Surface Point Elevation Length Of (MP) Depth Of Riser (L) Monitoring Monitoring Measured (blw.MP) Total Water 5,689.52 5,664.94 1.91						Total or		
Elevation (WL) Surfac (LSD) Elevation (MP) Length Of Riser (L) Monitoring Monitoring Water (blw.MP) Water (blw.LSD) Menitoring Well 5,663.03 5,664.94 1.91			Measuring			Measured	Total	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								-
5,589.52 $8/25/09$ 75.42 73.51 $5,589.64$ $9/22/09$ 75.48 73.57 $5,589.61$ $11/100$ 75.33 73.42 $5,589.92$ $12/14/09$ 75.02 73.11 $5,590.24$ $3/11/10$ 74.70 72.79 $5,590.40$ $5/11/10$ 74.54 72.63 $5,590.40$ $5/11/10$ 74.54 72.63 $5,590.40$ $5/22/8/11$ 74.70 72.79 $5,590.44$ $6/21/11$ 74.70 72.79 $5,590.44$ $6/21/11$ 74.79 72.68 $5,590.35$ $9/20/11$ 74.59 72.66 $5,590.34$ $3/27/12$ 74.60 72.69 $5,590.35$ $9/20/11$ 74.27 72.36 $5,590.34$ $3/27/12$ 74.60 72.69 $5,590.34$ $3/27/12$ 74.60 72.69 $5,580.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $12/28/12$ 75.97 74.02 $5,588.63$ $3/27/14$ 76.47 74.53 $5,588.50$ $3/27/14$ 76.99 74.02 $5,587.69$ $9/27/13$ 75.95 74.04 $5,587.69$ $9/21/14$ 77.20 75.29 $5,587.69$ $9/21/14$ 77.20 75.29 $5,587.69$ $9/21/14$ 77.90 75.99 $5,586.62$ $3/30/16$ 78.62 76.71 $5,586.63$ $9/29/16$ 78.84 76.87	(WL)				Monitoring	(blw.MP)	(blw.LSD)	
5,589,46 $9/22/09$ 75.48 73.57 $5,589,61$ $11/3/09$ 75.33 73.42 $5,589,62$ $21/4/09$ 75.02 73.11 $5,590,24$ $3/11/10$ 74.70 72.79 $5,590,40$ $5111/10$ 74.70 72.79 $5,590,44$ $9/29/10$ 74.70 72.79 $5,590,44$ $9/22/11$ 74.78 72.79 $5,590,44$ $62/21/11$ 74.78 72.59 $5,590,55$ $9/20/11$ 74.59 72.59 $5,590,35$ $9/20/11$ 74.59 72.68 $5,590,34$ $3/22/1/2$ 74.60 72.69 $5,590,34$ $3/22/1/2$ 74.62 72.71 $5,580,67$ $12/28/12$ 75.27 73.36 $5,589,77$ $9/27/13$ 75.99 74.02 $5,589,67$ $12/28/12$ 75.27 73.36 $5,589,67$ $12/28/12$ 75.37 74.02 $5,589,67$ $12/28/12$ 75.97 74.04 $5,589,67$ $12/28/12$ 75.97 74.04 $5,589,67$ $12/28/12$ 75.97 74.04 $5,588,69$ $3/27/14$ 76.44 74.53 $5,588,69$ $3/27/14$ 76.44 74.53 $5,587,69$ $12/17/14$ 77.25 75.34 $5,587,04$ $6/22/15$ 77.65 75.74 $5,586,63$ $9/20/15$ 78.01 76.11 $5,586,63$ $9/20/16$ 78.87 77.44 $588,59$ $6/22/17$ 79.35 77.44 <		5,663.03	5,664.94	1.91				131.91
5,589,61 $11/3/09$ 75.33 73.42 $5,589,22$ $12/14/09$ 75.02 73.11 $5,590,24$ $3711/10$ 74.70 72.79 $5,590,40$ $5/11/10$ 74.54 72.63 $5,590,24$ $9/29/10$ 74.70 72.79 $5,590,49$ $12/21/10$ 74.45 72.54 $5,590,16$ $2/28/11$ 74.78 72.87 $5,590,16$ $2/28/11$ 74.78 72.68 $5,590,35$ $9/20/11$ 74.57 72.68 $5,590,35$ $9/20/11$ 74.27 72.36 $5,590,32$ $6/28/12$ 74.60 72.69 $5,590,32$ $6/28/12$ 74.60 72.69 $5,589,37$ $9/27/12$ 75.17 73.36 $5,589,377$ $9/27/12$ 75.17 73.36 $5,589,45$ $3/28/13$ 75.49 73.58 $5,589,67$ $12/20/13$ 75.93 74.02 $5,588,50$ $3/27/14$ 76.44 74.53 $5,588,50$ $3/27/14$ 76.44 74.53 $5,587,69$ $12/17/14$ 77.25 75.34 $5,587,74$ $9/25/14$ 77.65 75.74 $5,586,63$ $9/20/15$ 78.01 76.10 $5,586,72$ $3/30/16$ 78.62 76.71 $5,586,63$ $3/20/17$ 78.54 76.63 $5,586,63$ $3/20/17$ 78.54 76.63 $5,586,63$ $3/20/17$ 78.54 76.63 $5,585,59$ $6/22/18$ 79.35 77.44								
5,589,92 $12/14/09$ 75.02 73.11 $5,590,24$ $3111/10$ 74.70 72.79 $5,590,40$ $5111/10$ 74.70 72.79 $5,590,49$ $12/21/10$ 74.45 72.54 $5,590,16$ $2/28/11$ 74.78 72.87 $5,590,16$ $2/28/11$ 74.78 72.59 $5,590,16$ $2/28/11$ 74.59 72.68 $5,590,35$ $9/20/11$ 74.59 72.68 $5,590,34$ $32/21/2$ 74.62 72.71 $5,580,32$ $6/28/12$ 74.62 72.71 $5,589,77$ $9/27/12$ 75.17 73.36 $5,589,67$ $12/28/12$ 75.27 73.36 $5,589,67$ $12/28/12$ 75.27 73.36 $5,589,67$ $12/20/13$ 76.79 74.88 $5,588,15$ $12/20/13$ 76.79 74.88 $5,588,15$ $12/20/13$ 76.79 74.88 $5,588,03$ $6/25/14$ 77.20 75.29 $5,587,74$ $9/25/14$ 77.20 75.29 $5,587,74$ $9/25/14$ 77.20 75.99 $5,586,72$ $12/27/15$ 78.22 76.31 $5,586,92$ $330/15$ 78.01 76.10 $5,586,16$ $9/29/16$ 78.78 76.63 $5,586,16$ $9/29/16$ 78.78 76.63 $5,585,59$ $6/27/17$ 58.57 77.44 $5585,59$ $6/22/15$ 77.90 77.90 $5585,59$ $6/22/18$ 79.38 77.44								
5,590.24 $3/11/10$ 74.70 72.79 $5,590.40$ $5/11/10$ 74.54 72.63 $5,590.24$ $9/29/10$ 74.70 72.79 $5,590.49$ $12/21/10$ 74.45 72.54 $5,590.16$ $2/28/11$ 74.78 72.87 $5,590.35$ $9/20/11$ 74.50 72.59 $5,590.35$ $9/20/11$ 74.57 72.68 $5,590.34$ $3/27/12$ 74.60 72.69 $5,590.32$ $6/28/12$ 74.60 72.69 $5,590.32$ $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.36 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $3/28/13$ 75.49 74.02 $5,589.68$ $3/27/14$ 76.47 74.53 $5,589.01$ $6/27/13$ 75.95 74.04 $5,588.50$ $3/27/14$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.47 75.29 $5,587.69$ $9/27/13$ 75.97 75.90 $5,587.69$ $12/20/13$ 76.57 75.74 $5,587.69$ $9/26/15$ 77.65 75.74 $5,586.72$ $9/20/15$ 77.80 75.99 $5,586.61$ $9/29/16$ 78.78 76.81 $5,585.65$ $6/22/15$ 79.91 77.44 585.76 $9/26/17$ 79.18 77.27 5585.76 $9/26/17$ 79.18 77.27 5585.75 $6/22/18$ 79.31 77.44 5								
5,590.40 $5/11/10$ 74.54 72.63 $5,590.24$ $9/29/10$ 74.70 72.79 $5,590.49$ $12/21/10$ 74.45 72.54 $5,590.16$ $2/28/11$ 74.78 72.87 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.36$ $9/20/11$ 74.59 72.68 $5,590.37$ $9/27/12$ 74.60 72.69 $5,590.34$ $3/27/12$ 74.62 72.71 $5,580.77$ $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $3/28/13$ 75.49 73.58 $5,589.01$ $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.03$ $6/25/14$ 76.79 74.88 $5,588.03$ $6/25/14$ 76.97 74.88 $5,588.03$ $6/25/14$ 76.97 74.88 $5,587.69$ $12/17/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.20 75.99 $5,587.69$ $12/17/14$ 77.20 75.99 $5,586.72$ $3/30/15$ 78.01 76.10 $5,586.61$ $9/29/17$ 78.92 76.31 $5,586.62$ $9/20/17$ 79.93 77.44 585.76 $9/20/17$ 79.35 77.44 585.76 $9/20/17$ 79.35 77.44 585.76 $9/20/17$ 79.35 77.44 585.75 $6/22/18$ 79.31 77.4 $585.$								
5,590.24 $9/29/10$ 74.70 72.79 $5,590.49$ $12/21/10$ 74.45 72.54 $5,590.16$ $2/28/11$ 74.78 72.87 $5,590.44$ $621/11$ 74.78 72.87 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.34$ $322/1/2$ 74.60 72.69 $5,590.32$ $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.36 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.45$ $3/28/13$ 75.49 74.02 $5,588.50$ $9/27/13$ 75.97 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $9/20/15$ 77.65 75.74 $5,587.69$ $3/30/16$ 78.02 76.11 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.93$ $9/30/15$ 78.01 76.03 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.16$ $9/29/16$ 78.78 76.63 $5,585.59$ $11/2/17$ 79.35 77.44 585.59 $12/2/17$ 79.35 77.44 585.59 $12/2/18$ 79.35 77.44								
5,590.49 $12/21/10$ 74.45 72.54 $5,590.16$ $2/28/11$ 74.78 72.87 $5,590.34$ $6/21/11$ 74.59 72.68 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.34$ $32/27/12$ 74.60 72.69 $5,590.34$ $32/27/12$ 74.60 72.69 $5,580.32$ $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.36 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.01$ $6/27/13$ 75.99 74.02 $5,588.01$ $6/27/13$ 75.95 74.04 $5,588.03$ $6/25/14$ 76.91 74.88 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $12/17/14$ 77.25 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.72$ $3/30/15$ 78.01 76.10 $5,586.92$ $3/30/15$ 78.01 76.10 $5,586.63$ $9/29/16$ 78.78 76.87 $5,585.76$ $9/26/17$ 79.18 77.27 5585.76 $9/26/17$ 79.18 77.27 5585.76 $9/26/17$ 79.48 77.44 5585.63 $3/20/18$ 79.35 77.44 5585.76 $9/26/17$ 79.89 77.84 5585.76 $9/26/17$ 79.88 77.76								
5,590.16 $2/28/11$ 74.78 72.87 $5,590.44$ $6/21/11$ 74.50 72.59 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.67$ $12/21/11$ 74.27 72.36 $5,590.34$ $3/27/12$ 74.60 72.69 $5,580.77$ $9/27/12$ 75.17 73.26 $5,589.77$ $9/27/12$ 75.17 73.36 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $3/28/13$ 75.49 73.58 $5,589.01$ $6/27/13$ 75.95 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.03$ $3/27/14$ 76.44 74.53 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/1/7/14$ 77.25 75.34 $5,587.69$ $12/1/7/14$ 77.25 75.34 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.32$ $6/30/16$ 78.62 76.11 $5,586.32$ $6/30/16$ 78.62 76.11 $5,586.33$ $12/21/16$ 78.95 57.04 $5,585.59$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 585.59 $6/22/18$ 79.35 77.44 5585.63 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.89 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
5,590.44 $6/21/11$ 74.50 72.59 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.35$ $9/20/11$ 74.59 72.68 $5,590.34$ $32/21/12$ 74.60 72.69 $5,590.32$ $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.901$ $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.50$ $3/27/14$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.20 75.99 $5,587.69$ $12/17/14$ 77.20 75.99 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.92$ $3/30/15$ 78.01 76.11 $5,586.92$ $3/30/16$ 78.62 76.11 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/17$ 58.95 57.04 $5,585.59$ $6/27/17$ 58.95 57.04 585.63 $9/26/17$ 79.35 77.44 585.59 $6/22/18$ 79.35 77.44 585.59 $6/22/18$ 79.35 77.44	5,590.49							
5,590.35 $9/20/11$ 74.59 72.68 $5,590.67$ $12/21/11$ 74.27 72.36 $5,590.34$ $3/27/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $3/28/13$ 75.49 73.58 $5,589.67$ $3/28/13$ 75.93 74.02 $5,589.99$ $9/27/13$ 75.95 74.04 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.99$ $9/27/14$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.29$ $3/30/15$ 78.22 76.31 $5,586.93$ $9/30/15$ 78.22 76.31 $5,586.93$ $9/20/15$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.92 76.11 $5,586.03$ $12/21/16$ 78.92 70.44 585.59 $9/26/17$ 79.18 77.27 585.59 $9/26/17$ 79.18 77.27 585.59 $9/26/17$ 79.18 77.74 585.59 $9/26/18$ 79.68 77.74 585.59 $9/26/18$ 79.68 77.74 585.5	5,590.16				2/28/11	74.78	72.87	
5,590.67 $12/21/11$ 74.27 72.36 $5,590.34$ $327/12$ 74.60 72.69 $5,590.32$ $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.901$ $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.99$ $9/27/14$ 76.44 74.53 $5,588.50$ $3/27/14$ 76.44 74.53 $5,587.69$ $12/17/14$ 76.27 75.29 $5,587.69$ $12/17/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.65 75.74 $5,586.72$ $12/2/15$ 78.01 76.10 $5,586.72$ $3/30/16$ 78.02 76.11 $5,586.33$ $9/30/15$ 78.01 76.10 $5,586.40$ $3/30/17$ 78.54 76.63 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $3/29/18$ 79.31 77.44 585.59 $9/26/17$ 79.18 77.27 585.59 $9/26/17$ 79.88 77.77 585.59 $9/26/17$ 79.86 77.77 585.59 $9/26/17$ 79.86 77.77 585.59 $9/26/19$ 79.78 77.87 585.59 $9/26/17$ 79.88 77.77 585.59	5,590.44				6/21/11	74.50	72.59	
5,590.34 $3/27/12$ 74.60 72.69 $5,590.32$ $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.45$ $3/28/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.50$ $3/27/14$ 76.44 74.53 $5,587.69$ $12/17/14$ 77.65 75.74 $5,587.69$ $12/17/14$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.62$ $6/30/16$ 78.62 76.71 $5,586.62$ $6/30/16$ 78.62 76.71 $5,586.63$ $9/29/16$ 78.78 76.63 $5,60.59$ $6/27/17$ 79.18 77.27 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.87 5585.14 $11/19/19$ 79.80 77.89 5584.42 $2/13/20$ 80.02 78.11 <td>5,590.35</td> <td></td> <td></td> <td></td> <td>9/20/11</td> <td>74.59</td> <td>72.68</td> <td></td>	5,590.35				9/20/11	74.59	72.68	
5,590.32 $6/28/12$ 74.62 72.71 $5,589.77$ $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.67$ $3/28/13$ 75.49 73.58 $5,589.01$ $6/27/13$ 75.93 74.02 $5,588.03$ $9/27/13$ 75.93 74.02 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 70.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.92$ $3/30/16$ 78.22 76.31 $5,586.03$ $12/2/15$ 78.22 76.31 $5,586.03$ $12/2/15$ 77.90 75.99 $5,586.03$ $12/2/16$ 78.78 76.87 $5,586.03$ $12/2/16$ 78.78 76.87 $5,586.16$ $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.59 $6/2/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.87 5585	5,590.67				12/21/11	74.27	72.36	
5,589.77 $9/27/12$ 75.17 73.26 $5,589.67$ $12/28/12$ 75.27 73.36 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.01$ $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.99$ $9/27/13$ 76.79 74.88 $5,588.03$ $3/27/14$ 76.44 74.53 $5,587.69$ $3/27/14$ 76.44 74.53 $5,587.69$ $12/17/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.55 75.34 $5,587.69$ $12/17/14$ 77.55 75.44 $5,587.69$ $3/26/15$ 77.65 75.74 $5,587.69$ $3/26/15$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.90 75.99 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.92$ $3/30/16$ 78.62 76.71 $5,586.03$ $12/2/15$ 77.90 75.99 $5,586.03$ $12/2/16$ 78.78 76.87 $5,586.03$ $12/2/16$ 78.78 76.63 $5,605.99$ $6/27/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.59 $12/2/18$ 79.35 77.44 5585.59 $6/24/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.87	5,590.34				3/27/12	74.60	72.69	
5,589.67 $12/28/12$ 75.27 73.36 $5,589.45$ $3/28/13$ 75.49 73.58 $5,589.01$ $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $12/2/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.02 76.11 $5,586.03$ $12/21/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.99 77.44 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.95 57.04 $5,586.03$ $12/21/16$ 78.95 57.04 $5,585.59$ $6/22/17$ 79.18 77.27 5585.59 $6/22/18$ 79.31 77.4 5585.59 $6/22/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.89 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/9/19$ 79.80 77.89 <td< td=""><td>5,590.32</td><td></td><td></td><td></td><td>6/28/12</td><td>74.62</td><td>72.71</td><td></td></td<>	5,590.32				6/28/12	74.62	72.71	
5,589.45 $3/28/13$ 75.49 73.58 $5,589.01$ $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.65 75.74 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.93$ $9/30/15$ 78.02 76.11 $5,586.93$ $9/30/16$ 78.02 76.11 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.33$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.59 $11/29/17$ 79.35 77.44 585.59 $6/22/18$ 79.31 77.4 5585.59 $6/22/18$ 79.68 77.77 5585.59 $6/24/18$ 79.68 77.77 5585.59 $6/24/19$ 79.89 77.87 5585.16 $3/26/19$ 79.78 77.87 5585.14 $11/19/19$ 70.80 78.81 5584.92 $2/13/20$ 80.02 78.11	5,589.77				9/27/12	75.17	73.26	
5,589.01 $6/27/13$ 75.93 74.02 $5,588.99$ $9/27/13$ 75.95 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.90 75.99 $5,586.72$ $12/2/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.03$ $12/21/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.59$ $9/26/17$ 79.18 77.27 $5x85.59$ $6/22/18$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.59 $6/24/19$ 79.88 77.76 5585.55 $6/24/19$ 79.88 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.88 77.77 5585.14 $11/19/19$ 70.80 78.17 5585.14 $11/19/19$ 70.80 78.17	5,589.67				12/28/12	75.27	73.36	
5,588.99 $9/27/13$ 75.95 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.02 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.16$ $9/29/16$ 78.78 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.63 $3/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.63 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.88 77.77 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11	5,589.45				3/28/13	75.49	73.58	
5,588.99 $9/27/13$ 75.95 74.04 $5,588.15$ $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.69$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.63 $3/29/18$ 79.31 77.4 5585.63 $3/29/18$ 79.31 77.4 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/26/19$ 79.78 77.76 5585.76 $9/26/18$ 79.68 77.77 5585.59 $6/22/18$ 79.68 77.77 5585.59 $6/22/18$ 79.68 77.77 5585.59 $6/22/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.16 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11	5,589.01				6/27/13	75.93	74.02	
5,588.15 $12/20/13$ 76.79 74.88 $5,588.50$ $3/27/14$ 76.44 74.53 $5,588.03$ $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.33$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.33$ $9/26/17$ 79.18 77.27 $5,585.59$ $6/22/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.63 $3/29/18$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.59 $6/22/18$ 79.67 77.76 5585.59 $6/22/18$ 79.68 77.77 5585.59 $6/24/19$ 79.88 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.89 77.89 5584.42 $2/13/20$ 80.02 78.11					9/27/13	75.95	74.04	
5,588.50 $3/27/14$ 76.44 74.53 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.02 76.11 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.78 76.87 $5,586.16$ $9/29/16$ 78.78 76.63 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.59 $6/22/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.44 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,588.03 $6/25/14$ 76.91 75.00 $5,587.74$ $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.29$ $3/26/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.62 76.11 $5,586.92$ $3/30/16$ 78.62 76.11 $5,586.03$ $12/21/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,587.74 $9/25/14$ 77.20 75.29 $5,587.69$ $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.63 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.95 57.04 $5,585.76$ $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.59 $6/22/18$ 79.35 77.44 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,587.69 $12/17/14$ 77.25 75.34 $5,587.29$ $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.04$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.27 $2/2/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,587.29 $3/26/15$ 77.65 75.74 $5,587.04$ $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,585.76$ $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.26 $9/26/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,587.04 $6/22/15$ 77.90 75.99 $5,586.93$ $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.26 $9/26/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.93 $9/30/15$ 78.01 76.10 $5,586.72$ $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.26 $9/26/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.16 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.72 $12/2/15$ 78.22 76.31 $5,586.92$ $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.16 $3/26/19$ 79.78 77.87 5585.16 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.92 $3/30/16$ 78.02 76.11 $5,586.32$ $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.32 $6/30/16$ 78.62 76.71 $5,586.16$ $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.16 $9/29/16$ 78.78 76.87 $5,586.03$ $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.03 $12/21/16$ 78.91 77.00 $5,586.40$ $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11								
5,586.40 $3/30/17$ 78.54 76.63 $5,605.99$ $6/27/17$ 58.95 57.04 5585.76 $9/26/17$ 79.18 77.27 5585.59 $11/29/17$ 79.35 77.44 5585.63 $3/29/18$ 79.31 77.4 5585.59 $6/22/18$ 79.35 77.44 5585.26 $9/26/18$ 79.68 77.77 5585.27 $12/18/18$ 79.67 77.76 5585.16 $3/26/19$ 79.78 77.87 5585.05 $6/24/19$ 79.89 77.98 5584.86 $8/13/19$ 80.08 78.17 5585.14 $11/19/19$ 79.80 77.89 5584.92 $2/13/20$ 80.02 78.11	100							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
5585.633/29/1879.3177.45585.596/22/1879.3577.445585.269/26/1879.6877.775585.2712/18/1879.6777.765585.163/26/1979.7877.875585.056/24/1979.8977.985584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5585.596/22/1879.3577.445585.269/26/1879.6877.775585.2712/18/1879.6777.765585.163/26/1979.7877.875585.056/24/1979.8977.985584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5585.269/26/1879.6877.775585.2712/18/1879.6777.765585.163/26/1979.7877.875585.056/24/1979.8977.985584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5585.2712/18/1879.6777.765585.163/26/1979.7877.875585.056/24/1979.8977.985584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5585.163/26/1979.7877.875585.056/24/1979.8977.985584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5585.056/24/1979.8977.985584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5584.868/13/1980.0878.175585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5585.1411/19/1979.8077.895584.922/13/2080.0278.11								
5584.92 2/13/20 80.02 78.11								
5585.27 5/5/20 79.67 77.76								
	5585.27				5/5/20	79.67	11.16	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,663.03	5,664.94	1.91				131.91
5584.46				9/22/20	80.48	78.57	
5584.58				12/30/20	80.36	78.45	
5584.73				3/11/21	80.21	78.30	
5584.38				6/24/21	80.56	78.65	
5584.25				8/11/21	80.69	78.78	

	White Mesa Mill - Well TWN-7							
					Total or			
		Measuring			Measured	Total		
Water	Land	Point			Depth to	Depth to	Total	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of	
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well	
	5,647.39	5,649.26	1.87				107.2	
5,552.56				08/25/09	96.70	94.83		
5,558.34				09/21/09	90.92	89.05		
5,558.82				11/10/09	90.44	88.57		
5,558.96				12/14/09	90.30	88.43		
5,559.54				03/11/10	89.72	87.85		
5,559.60				05/11/10	89.66	87.79		
5,559.83				09/29/10	89.43	87.56		
5,559.00				12/21/10	90.26	88.39		
5,559.68				02/28/11	89.58	87.71		
5,560.43				06/21/11	88.83	86.96		
5,560.46				09/20/11	88.80	86.93		
5,560.78				12/21/11	88.48	86.61		
5,560.92				03/27/12	88.34	86.47		
5,560.87				06/28/12	88.39	86.52		
5,561.40				09/27/12	87.86	85.99		
5,561.50				12/28/12	87.76	85.89		
5,562.01				03/28/13	87.25	85.38		
5,562.21				06/27/13	87.05	85.18		
5,562.41				09/27/13	86.85	84.98		
5,562.23				12/20/13	87.03	85.16		
5,562.85				03/27/14	86.41	84.54		
5,562.95				06/25/14	86.31	84.44		
5,563.06				09/25/14	86.20	84.33		
5,563.21				12/17/14	86.05	84.18		
5,563.33				03/26/15	85.93	84.06		
5,563.46				06/22/15	85.80	83.93		
5,563.64				09/30/15	85.62	83.75		
5,563.88				12/02/15	85.38	83.51		
5,564.19				03/30/16	85.07	83.20		
5,563.97				06/30/16	85.29	83.42		
5,564.21				09/29/16	85.05	83.18		
5,564.46				12/21/16	84.80	82.93		
5,564.96				03/30/17	84.30	82.43		
5,564.81				06/27/17	84.45	82.58		
5,565.46				09/26/17	83.80	81.93		
5,565.45				11/29/17	83.81	81.94		
5,566.11				03/29/18	83.15	81.94		
5,566.21				05/29/18	83.05	81.18		
5,566.42				09/26/18	83.03 82.84	80.97		
5,566.09				12/18/18	82.84 83.17	80.97 81.30		
5,566.67				03/26/19	83.17 82.59	81.30		
5,566.93				05/26/19 06/24/19	82.39	80.72 80.46		
				08/13/19		80.46 80.11		
5,567.28				11/19/19	81.98	80.11		
5,567.26					82.00			
5,567.12 5,567.14				02/13/20 05/05/20	82.14 82.12	80.27 80.25		
5,507.14				05/05/20	02.12	00.23		

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD) 5,647.39	(MP) 5,649.26	Riser (L) 1.87	Monitoring	(blw.MP)	(blw.LSD)	Well 107.2
5,567.98	.,			09/22/20	81.28	79.41	
5,568.38				12/30/20	80.88	79.01	
5,568.18				03/11/21	81.08	79.21	
5,568.50				06/24/21	80.76	78.89	
5,568.71				08/11/21	80.55	78.68	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.80	5,649.53	1.73				124.73
5,586.18				11/4/09	63.35	61.62	
5,586.51				12/14/09	63.02	61.29	
5,586.71				3/11/10	62.82	61.09	
5,586.72				5/11/10	62.81	61.08	
5,586.53				9/29/10	63.00	61.27	
5,586.80				12/21/10	62.73	61.00	
5,586.74				2/28/11	62.79	61.06	
5,586.84				6/21/11	62.69	60.96	
5,586.73				9/20/11	62.80	61.07	
5,586.98				12/21/11	62.55	60.82	
5,587.07				3/27/12	62.46	60.73	
5,587.10				6/28/12	62.43	60.70	
5,587.07				9/27/12	62.46	60.73	
5,587.33				12/28/12	62.20	60.47	
5,587.43				3/28/13	62.10	60.37	
5,587.43				6/27/13	62.10	60.37	
5,587.72				9/27/13	61.81	60.08	
5,587.22				12/20/13	62.31	60.58	
5,587.91				3/27/14	61.62	59.89	
5,587.74				6/25/14	61.79	60.06	
5,587.76				9/25/14	61.77	60.04	
5,587.88				12/17/14	61.65	59.92	
5,587.97				3/26/15	61.56	59.83	
5,587.98				6/22/15	61.55	59.82	
5,588.18				9/30/15	61.35	59.62	
5,588.23				12/2/15	61.30	59.57	
5,588.70				3/30/16	60.83	59.10	
5,588.31				6/30/16	61.22	59.49	
5,588.36				9/29/16	61.17	59.44	
5,588.43				12/21/16	61.10	59.37	
5,588.96				3/30/17	60.57	58.84	
5,589.07				6/27/17	60.46	58.73	
5588.86				9/26/17	60.67	58.94	
5588.82				11/29/17	60.71	58.98	
5589.12				3/29/18	60.41	58.68	
5589.19				6/22/18	60.34	58.61	
5589.12				9/26/18	60.41	58.68	
5589.20				12/18/18	60.33	58.60	
5589.32				3/26/19	60.33 60.21	58.48	
5589.40				6/25/19	60.13	58.40	
5589.32				8/13/19	60.13	58.40	
5589.52 5589.59				8/13/19 11/19/19	59.94	58.48	
5589.73				2/13/20	59.94 59.80	58.21 58.07	
5589.75 5590.17							
5590.17 5589.67				5/5/20	59.36	57.63	
5589.67 5590.05				9/22/20	59.86	58.13	
3390.03				12/30/20	59.48	57.75	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,647.80	5,649.53	1.73				124.73
5590.14				3/11/21	59.39	57.66	
5590.04				6/24/21	59.49	57.76	
5590.05				8/11/21	59.48	57.75	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(((1))	5,651.07	5,652.70	1.63	Monitoring	(010.011)	(DIW.LDD)	94.63
5,603.34	0,001107	5,052.10	1.05	11/4/09	49.36	47.73	71.05
5,603.56				12/14/09	49.14	47.51	
5,603.84				3/11/10	48.86	47.23	
5,604.31				5/11/10	48.39	46.76	
5,604.28				9/29/10	48.42	46.79	
5,604.39				12/21/10	48.31	46.68	
5,604.20				2/28/11	48.50	46.87	
5,604.55				6/21/11	48.15	46.52	
5,604.74				9/20/11	47.96	46.33	
5,604.94				12/21/11	47.76	46.13	
5,604.84				3/27/12	47.86	46.23	
5,604.85				6/28/12	47.85	46.22	
5,604.99				9/27/12	47.71	46.08	
5,605.10				12/28/12	47.60	45.97	
5,605.22				3/28/13	47.48	45.85	
5,605.11				6/27/13	47.59	45.96	
5,605.39				9/27/13	47.31	45.68	
5,604.99				12/20/13	47.71	46.08	
5,605.71				3/27/14	46.99	45.36	
5,605.16				6/25/14	47.54	45.91	
5,605.10				9/25/14	47.60	45.97	
5,605.25				12/17/14	47.45	45.82	
5,605.04				3/26/15	47.66	46.03	
5,604.99				6/22/15	47.71	46.08	
5,605.05				9/30/15	47.65	46.02	
5,604.96				12/2/15	47.74	46.11	
5,605.25				3/30/16	47.45	45.82	
5,605.00				6/30/16	47.70	46.07	
5,605.00				9/29/16	47.70	46.07	
5,605.00				12/21/16	47.70	46.07	
5,605.43				3/30/17	47.27	45.64	
5,605.20				6/27/17	47.50	45.87	
5605.00				9/26/17	47.70	46.07	
5605.02				11/29/17	47.68	46.05	
5605.11				3/29/18	47.59	45.96	
5605.19				6/22/18	47.51	45.88	
5604.99				9/26/18	47.71	46.08	
5605.18				12/19/18	47.52	45.89	
5605.06				3/26/19	47.64	46.01	
5604.96				6/24/19	47.74	46.11	
5604.87				8/13/19	47.83	46.20	
5605.19				11/19/19	47.51	45.88	
5605.02				2/13/20	47.68	46.05	
5605.30				5/5/20	47.40	45.77	
5604.85				9/22/20	47.85	46.22	
5604.99				12/30/20	47.71	46.08	

Water Levels and Data over Time White Mesa Mill - Well TWN-16

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,651.07	5,652.70	1.63				94.63
5604.99				3/11/21	47.71	46.08	
5604.90				6/24/21	47.80	46.17	
5604.85				8/11/21	47.85	46.22	

Water Levels and Data over Time White Mesa Mill - Well TWN-16

	Lend	Measuring			Total or Measured	Total	Tatal
Water	Land	Point	1 1 01	D	Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L) 1.50	Monitoring	(blw.MP)	(blw.LSD)	Well
5 506 05	5,643.95	5,645.45	1.30	11/2/00	59.60	57.10	147
5,586.85				11/2/09	58.60		
5,600.14				12/14/09	45.31	43.81	
5,587.36				3/11/10	58.09	56.59	
5,587.71				5/11/10	57.74	56.24	
5,587.50				9/29/10	57.95	56.45	
5,607.66				12/21/10	37.79	36.29	
5,587.35				2/28/11	58.10	56.60	
5,587.71				6/21/11	57.74	56.24	
5,587.65				9/20/11	57.80	56.30	
5,587.95				12/21/11	57.50	56.00	
5,587.05				3/27/12	58.40	56.90	
5,587.05				6/28/12	58.40	56.90	
5,587.50				9/27/12	57.95	56.45	
5,587.50				12/28/12	57.95	56.45	
5,587.32				3/28/13	58.13	56.63	
5,586.95				6/27/13	58.50	57.00	
5,587.02				9/27/13	58.43	56.93	
5,586.26				12/20/13	59.19	57.69	
5,586.87				3/27/14	58.58	57.08	
5,586.23				6/25/14	59.22	57.72	
5,586.02				9/25/14	59.43	57.93	
5,585.99				12/17/14	59.46	57.96	
5,585.66				3/26/15	59.79	58.29	
5,585.45				6/22/15	60.00	58.50	
5,585.37				9/30/15	60.08	58.58	
5,585.24				12/2/15	60.21	58.71	
5,585.38				3/30/16	60.07	58.57	
5,584.85				6/30/16	60.60	59.10	
5,584.69				9/29/16	60.76	59.26	
5,584.60				12/21/16	60.85	59.35	
5,584.99				3/30/17	60.46	58.96	
5,584.65				6/27/17	60.80	59.30	
5584.36				9/26/17	61.09	59.59	
5584.24				11/29/17	61.21	59.71	
5584.25				3/29/18	61.20	59.70	
5584.23				6/22/18	61.22	59.72	
5583.92				9/26/18	61.53	60.03	
5583.85				12/18/18	61.60	60.10	
5583.72				3/26/19	61.73	60.23	
5583.69				6/24/19	61.76	60.26	
5583.76				8/13/19	61.69	60.19	
5583.72				11/19/19	61.73	60.23	
5583.54				2/13/20	61.91	60.41	
5583.34				5/5/20	62.11	60.61	
5583.15				9/22/20	62.30	60.8	
5583.26				12/30/20	62.19	60.69	

Water Levels and Data over Time White Mesa Mill - Well TWN -18 Total

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,643.95	5,645.45	1.50				147
5583.36				3/11/21	62.09	60.59	
5583.06				6/24/21	62.39	60.89	
5583.01				8/11/21	62.44	60.94	

Water Levels and Data over Time White Mesa Mill - Well TWN -18 Total or

Water Levels and Data over Time White Mesa Mill - Well TWN-19

		vv mu	e iviesa iviii	I - wen I w			
					Total or		
	-	Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,659.59	5,661.36	1.77				107.77
5,606.17				11/2/09	55.19	53.42	
5,606.70				12/14/09	54.66	52.89	
5,607.22				3/11/10	54.14	52.37	
5,607.89				5/11/10	53.47	51.70	
5,607.98				9/29/10	53.38	51.61	
5,608.41				12/21/10	52.95	51.18	
5,608.49				2/28/11	52.87	51.10	
5,608.60				6/21/11	52.76	50.99	
5,609.17				9/20/11	52.19	50.42	
5,608.90				12/21/11	52.46	50.69	
5,608.87				3/27/12	52.49	50.72	
5,608.86				6/28/12	52.50	50.73	
5,608.86				9/27/12	52.50	50.73	
5,608.86				12/28/12	52.50	50.73	
5,609.17				3/28/13	52.19	50.42	
5,608.88				6/27/13	52.48	50.71	
5,608.92				9/27/13	52.44	50.67	
5,608.46				12/20/13	52.90	51.13	
5,608.88				3/27/14	52.48	50.71	
5,608.33				6/25/14	53.03	51.26	
5,608.11				9/25/14	53.25	51.48	
5,608.36				12/17/14	53.00	51.48	
5,607.96				3/26/15	53.40	51.63	
						51.61	
5,607.98				6/22/15	53.38		
5,608.06				9/30/15	53.30	51.53	
5,607.88				12/2/15	53.48	51.71	
5,608.41				3/30/16	52.95	51.18	
5,611.39				6/30/16	49.97	48.20	
5,607.90				9/29/16	53.46	51.69	
5,608.07				12/21/16	53.29	51.52	
5,608.44				3/30/17	52.92	51.15	
5,608.07				6/27/17	53.29	51.52	
5608.06				9/26/17	53.30	51.53	
5607.91				11/29/17	53.45	51.68	
5608.00				3/28/18	53.36	51.59	
5607.71				6/21/18	53.65	51.88	
5607.50				9/26/18	53.86	52.09	
5607.94				12/19/18	53.42	51.65	
5607.42				3/26/19	53.94	52.17	
5607.46				6/25/19	53.90	52.13	
5607.39				8/13/19	53.97	52.20	
5607.84				11/19/19	53.52	51.75	
5607.69				2/13/20	53.67	51.90	
5607.57				5/5/20	53.79	52.02	
5607.46				9/22/20	53.90	52.13	
5607.66				12/30/20	53.70	51.93	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	I otal or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,659.59	5,661.36	1.77				107.77
5607.75				3/11/21	53.61	51.84	
5607.39				6/24/21	53.97	52.20	
5607.33				8/11/21	54.03	52.26	

Water Levels and Data over Time White Mesa Mill - Well TWN-19 Total or

Water	Land	Measuring Point			Total or Measured Depth to	Total Depth to	Total
Elevation (WL)	Surface (LSD)	Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Water (blw.MP)	Water (blw.LSD)	Depth Of Well
	5,640.46	5,642.46	2.00				95.5
5,564.53				6/24/21	77.93	75.93	
5,564.51				8/11/21	77.95	75.95	

Water Levels and Data over Time White Mesa Mill - Well TWN-20

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,633.08	5,635.08	2.00				105.7
5,555.84				6/24/21	79.24	77.24	
5,555.89				8/11/21	79.19	77.19	

Water Levels and Data over Time White Mesa Mill - Well TWN-21 Total

		v v mit			Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(WL)	5,613.34	5,614.50	1.16	Montoring		(DIW.LSD)	110
5,534.92	5,015.51	5,011.50	1.10	10/24/06	79.58	78.42	110
5,535.09				3/16/07	79.41	78.25	
5,535.46				8/27/07	79.04	77.88	
5,535.06				10/15/07	79.44	78.28	
5,535.78				3/15/08	78.72	77.56	
5,536.26				6/15/08	78.24	77.08	
5,536.35				9/15/08	78.15	76.99	
5,536.68				11/15/08	77.82	76.66	
5,535.42				3/15/09	79.08	77.92	
5,537.11				6/30/09	77.39	76.23	
5,536.93				9/10/09	77.57	76.41	
5,537.23				12/11/09	77.27	76.11	
5,537.59				3/11/10	76.91	75.75	
5,537.85				5/11/10	76.65	75.49	
5,538.37				9/29/10	76.13	74.97	
5,537.70				12/21/10	76.8	75.64	
5,537.67				2/28/11	76.83	75.67	
5,538.31				6/21/11	76.19	75.03	
5,538.15				9/20/11	76.35	75.19	
5,538.42				12/21/11	76.08	74.92	
5,538.54				3/27/12	75.96	74.8	
5,538.60				6/28/12	75.9	74.74	
5,538.68				9/27/12	75.82	74.66	
5,538.99				12/28/12	75.51	74.35	
5,539.25				3/28/13	75.25	74.09	
5,539.05				6/27/13	75.45	74.29	
5,539.60				9/27/13	74.90	73.74	
5,539.67				12/20/13	74.83	73.67	
5,539.77				3/27/14	74.73	73.57	
5,539.40				6/25/14	75.10	73.94	
5,539.19				9/25/14	75.31	74.15	
5,539.30				12/17/14	75.20	74.04	
5,539.01				3/26/15	75.49	74.33	
5,538.99				6/22/15	75.51	74.35	
5,539.10				9/30/15	75.40	74.24	
5,538.90				12/2/15	75.60	74.44	
5,539.53				3/30/16	74.97	73.81	
5,539.11				6/30/16	75.39	74.23	
5,539.05				9/29/16	75.45	74.29	
5,539.06				12/21/16	75.44	74.28	
5,539.81				3/30/17	74.69	73.53	
5,539.60				6/27/17	74.90	73.74	
5539.40 5539.30				9/27/17 11/30/17	75.10 75.20	73.94 74.04	
5539.50				3/29/18		74.04	
5539.55 5539.63				6/22/18	74.95 74.87	73.79	
5539.65				9/26/18	75.10	73.94	
5539.40				12/17/18	74.91	73.94	
5539.42				3/26/19	75.08	73.92	
5539.70				6/24/19	74.80	73.64	
5539.45				8/13/19	75.05	73.89	
5539.53				11/19/19	74.97	73.81	
5539.57				2/13/20	74.93	73.77	
5539.27				5/5/20	75.23	74.07	

Water Levels and Data over Time White Mesa Mill - Well MW-30

	·· atti	Levels all	u Data orti		
	White	e Mesa Mi	ill - Well M	W-30	
				Total or	
	Measuring			Measured	Total
Land	Point			Depth to	Depth to
Surface	Elevation	Length Of	Date Of	Water	Water
(T CD)		D' (T)	3.4		AL TODA

Water Levels and Data over Time

		wreasuring			wieasured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,613.34	5,614.50	1.16				110
5539.25				9/22/20	75.25	74.09	
5539.41				12/30/20	75.09	73.93	
5539.45				3/11/21	75.05	73.89	
5539.34				6/24/21	75.16	74.00	
5539.32				8/11/21	75.18	74.02	

Water Levels and	Data over Time
White Mesa Mill	- Well MW-31
	Total or

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface		Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,615.26	5,616.40	1.14		(~)	()	130
5,544.07				10/24/06	72.33	71.19	
5,544.45				3/16/07	71.95	70.81	
5,536.94				8/27/07	79.46	78.32	
5,544.62				10/15/07	71.78	70.64	
5,545.37				3/15/08	71.03	69.89	
5,544.50				6/15/08	71.90	70.76	
5,545.94				9/15/08	70.46	69.32	
5,546.42				11/15/08	69.98	68.84	
5,546.03				3/15/09	70.37	69.23	
5,546.65				6/30/09	69.75	68.61	
5,546.45				9/10/09	69.95	68.81	
5,546.75				12/11/09	69.65	68.51	
5,547.09				3/11/10	69.31	68.17	
5,547.41				5/11/10	68.99	67.85	
5,547.28				9/29/10	69.12	67.98	
5,547.45				12/21/10	68.95	67.81	
5,547.37				2/28/11	69.03	67.89	
5,547.96				6/21/11	68.44	67.3	
5,547.65				9/20/11	68.75	67.61	
5,548.34				12/21/11	68.06	66.92	
5,548.30				3/27/12	68.10	66.96	
5,548.40				6/28/12	68.00	66.86	
5,548.59				9/27/12	67.81	66.67	
5,548.91				12/28/12	67.49	66.35	
5,549.14				3/28/13	67.26	66.12	
5,548.90				6/27/13	67.50	66.36	
5,549.25				9/27/13	67.15	66.01	
5,549.16				12/20/13	67.24	66.10	
5,548.95				3/27/14	67.45	66.31	
5,548.60				6/25/14	67.80	66.66	
5,548.19				9/25/14	68.21	67.07	
5,548.25				12/17/14	68.15	67.01	
5,548.14				3/26/15	68.26	67.12	
5,547.85				6/22/15	68.55	67.41	
5,548.00				9/30/15	68.40	67.26	
5,547.84				12/2/15	68.56	67.42	
5,548.35				3/30/16	68.05	66.91	
5,548.00				6/30/16	68.40	67.26	
5,547.80				9/29/16	68.60	67.46	
5,547.80				12/21/16	68.60	67.46	
5,548.30				3/30/17	68.10	66.96	
5,548.10				6/27/17	68.30	67.16	
5,547.93				9/27/17	68.47	67.33	
5,547.80				11/30/17	68.60	67.46	
5,547.92				3/29/18	68.48	67.34	
5,547.95				6/22/18	68.45	67.31	
5,547.69				9/26/18	68.71	67.57	
5,547.82				12/17/18	68.58	67.44	
5,547.56				3/26/19	68.84	67.70	
5,547.68				6/24/19	68.72	67.58	
5,547.56				8/13/19	68.84	67.70	
5,547.58				11/19/19	68.82	67.68	
5,547.59				2/13/20	68.81	67.67	
5,547.92				5/5/20	68.48	67.34	
5,547.18				9/22/20	69.22	68.08	

Water Levels and Data over Time White Mesa Mill - Well MW-31 Total o

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,615.26	5,616.40	1.14				130
5,547.29				12/30/20	69.11	67.97	
5,547.53				3/11/21	68.87	67.73	
5,547.14				6/24/21	69.26	68.12	
5,547.07				8/11/21	69.33	68.19	

Tab G

Laboratory Analytical Reports

 Client:
 Energy Fuels Resources, Inc.

 Project:
 3rd Quarter Nitrate 2021

 Lab Sample ID:
 2108638-013

 Client Sample ID:
 PIEZ-01_08192021

 Collection Date:
 8/19/2021
 948h

 Received Date:
 8/24/2021
 940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/7/2021 135h	E300.0	1.00	70.0	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 901h	E353.2	0.100	7.60	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/10/2021 Page 16 of 21

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of the re-publication of the republication of the r

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-012Client Sample ID:PIEZ-02_08192021Collection Date:8/19/20218/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/7/2021 111h	E300.0	1.00	14.6	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 900h	E353.2	0.100	0.110	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 E-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-014Client Sample ID:PIEZ-03A_08192021Collection Date:8/19/2021Received Date:8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/7/2021 159h	E300.0	2.00	81.5	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 902h	E353.2	0.100	11.2	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Report Date: 9/10/2021 Page 17 of 21

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Energy Fuels Resources, Inc. 3rd Quarter Nitrate 2021 **Project:** 2108638-005 Lab Sample ID: Client Sample ID: TWN-01 08182021 **Collection Date:** 8/18/2021 1016h **Received Date:** 8/24/2021 940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		9/6/2021 1959h	E300.0	1.00	35.7	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1342h	E353.2	0.100	2.47	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt Lake City,

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

Report Date: 9/10/2021 Page 8 of 21

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of the re-publication of the report in connection with the re-publication of the re-publicat

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-006Client Sample ID:TWN-02_08182021Collection Date:8/18/2021Received Date:8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 2023h	E300.0	1.00	58.9	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1343h	E353.2	0.100	15.3	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/10/2021 Page 9 of 21

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-011Client Sample ID:TWN-03_08192021Collection Date:8/19/2021922h8/24/2021Received Date:8/24/2021

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/7/2021 047h	E300.0	2.00	146	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 1002h	E353.2	0.200	24.3	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 3-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/10/2021 Page 14 of 21

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-004Client Sample ID:TWN-04_08182021Collection Date:8/18/2021919h8ceeived Date:

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 1935h	E300.0	1.00	23.7	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1338h	E353.2	0.100	1.28	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/10/2021 Page 7 of 21

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-010Client Sample ID:TWN-07_08192021Collection Date:8/19/2021913h8cceived Date:8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/7/2021 023h	E300.0	2.00	121	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 855h	E353.2	0.100	15.1	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 ۶-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/10/2021 Page 13 of 21

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement.

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-002Client Sample ID:TWN-18_08172021Collection Date:8/17/2021917hReceived Date:8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 1846h	E300.0	1.00	42.9	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1332h	E353.2	0.100	0.199	§١

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Report Date: 9/10/2021 Page 5 of 21

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report.

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-001Client Sample ID:TWN-18R_08172021Collection Date:8/17/2021845hReceived Date:8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 1822h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1336h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 2-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Report Date: 9/10/2021 Page 4 of 21

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Energy Fuels Resources, Inc. **Project:** 3rd Quarter Nitrate 2021 2108638-009 Lab Sample ID: Client Sample ID: TWN-20 08192021 **Collection Date:** 8/19/2021 905h **Received Date:** 8/24/2021 940h

Contact: Tanner Holliday

Analytical Results

Client:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 2359h	E300.0	2.00	35.3	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 849h	E353.2	0.100	0.960	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/10/2021 Page 12 of 21

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of this report in connection with the advertisement.

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-008Client Sample ID:TWN-21_08192021Collection Date:8/19/2021855hReceived Date:8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 2247h	E300.0	2.00	40.5	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1345h	E353.2	0.100	1.16	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/10/2021 Page 11 of 21

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement. promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Chloroform 2021Lab Sample ID:2108726-014Client Sample ID:TW4-22_08242021Collection Date:8/24/2021935hReceived Date:8/26/20211025h

Contact: Tanner Holliday

Analytical Results

Date Date Method Reporting Analytical Compound Units Prepared Used Limit Result Qual Analyzed 3440 South 700 West Salt Lake City, UT 84119 Chloride 9/9/2021 658h E300.0 10.0 410 mg/L Nitrate/Nitrite (as N) mg/L 8/27/2021 1046h E353.2 0.500 35.1

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Chloroform 2021Lab Sample ID:2108726-003Client Sample ID:TW4-24_08242021Collection Date:8/24/2021926h8/26/2021Received Date:8/26/20211025h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

t	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
9	Chloride	mg/L		9/7/2021 800h	E300.0	10.0	1,010	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 1003h	E353.2	0.500	26.7	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/13/2021 Page 8 of 46

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Chloroform 2021Lab Sample ID:2108726-001Client Sample ID:TW4-25_08242021Collection Date:8/24/2021915hReceived Date:8/26/20211025h

INORGANIC ANALYTICAL REPORT

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/7/2021 624h	E300.0	5.00	69.3	
	Nitrate/Nitrite (as N)	mg/L		8/27/2021 952h	E353.2	0.100	0.793	1

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 9/13/2021 Page 6 of 46

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client: Energy Fuels Resources, Inc. **Project:** 3rd Quarter Nitrate 2021 Lab Sample ID: 2108638-007 Client Sample ID: TWN-60_08182021 **Collection Date:** 8/18/2021 715h **Received Date:** 8/24/2021 940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 2047h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1344h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 9/10/2021 Page 10 of 21

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Perinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report is provided for the exclusive use of the name of this company or any member of its staff, or reproduction of this report is provided for the exclusive use of the name of this company or any member of its staff, or reproduction of this report is provided for the exclusive use of the name of this company or any member of its staff, or reproduction of this report is provided for the exclusive use of the name of the

Date

Analyzed

9/9/2021 746h

8/27/2021 1030h

Method

Used

E300.0

E353.2

Date

Prepared

Client: Energy Fuels Resources, Inc. **Project:** 3rd Quarter Chloroform 2021 2108726-016 Lab Sample ID: Client Sample ID: TW4-60 08242021 **Collection Date:** 8/24/2021 1300h **Received Date:** 8/26/2021 1025h

mg/L

Contact: Tanner Holliday

Reporting

Limit

1.00

0.100

Analytical Result

< 1.00

< 0.100

Qual

Analytical Results

Compound Units 3440 South 700 West Salt Lake City, UT 84119 Chloride mg/L Nitrate/Nitrite (as N)

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report is provided for the exclusive use of the name of the sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of the republication of the reproduction of this report in connection with the republication of the reproduction of the reproducting the reproduction of the reproduction of the reproduction of th

American West

INORGANIC ANALYTICAL REPORT

Client:Energy Fuels Resources, Inc.Project:3rd Quarter Nitrate 2021Lab Sample ID:2108638-003Client Sample ID:TWN-65_08172021Collection Date:8/17/2021917h8/24/2021940h

Contact: Tanner Holliday

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		9/6/2021 1911h	E300.0	1.00	44.1	
	Nitrate/Nitrite (as N)	mg/L		8/24/2021 1337h	E353_2	0.100	0.208	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Report Date: 9/10/2021 Page 6 of 21

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any process, or in connection with the advertisement of the connection with the connection with the advertisement o

Tanner Holliday Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

RE: 3rd Quarter Nitrate 2021

Lab Set ID: 2108638 Dear Tanner Holliday: 3440 South 700 West Salt Lake City, UT 84119 American West Analytical Laboratories received sample(s) on 8/24/2021 for the analyses presented in the following report. American West Analytical Laboratories (AWAL) is accredited by The National Phone: (801) 263-8686 Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is Toll Free: (888) 263-8686 state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri. Fax: (801) 263-8687 All analyses were performed in accordance to the NELAP protocols unless noted e-mail: awal@awal-labs.com otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call. web: www.awal-labs.com The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or Jennifer Osborn purging efficiency. The "Reporting Limit" found on the report is equivalent to the Laboratory Director practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant Jose Rocha

QA Officer

Thank You,		0
	Jaco C	Digitally signed
	Jose G	by Jose G.
		Rocha
	Rocha	Date: 2021.09.10
Approved by:	r toona	13:38 <mark>:</mark> 41 -06'00'
11 5		

figures for quality control and calculation purposes.

Laboratory Director or designee

SAMPLE SUMMARY

American West	Client: Project: Lab Set ID: Date Received:	Energy Fuels Resources, Inc 3rd Quarter Nitrate 2021 2108638 8/24/2021 940h		C	Contact: Te	nner Holliday
	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
3440 South 700 West	2108638-001A	TWN-18R_08172021	8/17/2021	845h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	2108638-001B	TWN-18R_08172021	8/17/2021	845h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-002A	TWN-18_08172021	8/17/2021	917h	Aqueous	Anions, E300.0
	2108638-002B	TWN-18_08172021	8/17/2021	917h	Aqueous	Nitrite/Nitrate (as N), E353.2
Phone: (801) 263-8686	2108638-003A	TWN-65_08172021	8/17/2021	917h	Aqueous	Anions, E300.0
Toll Free: (888) 263-8686	2108638-003B	TWN-65_08172021	8/17/2021	917h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	2108638-004A	TWN-04_08182021	8/18/2021	919h	Aqueous	Anions, E300.0
	2108638-004B	TWN-04_08182021	8/18/2021	919h	Aqueous	Nitrite/Nitrate (as N), E353.2
:-mail: awal@awal-labs.com	2108638-005A	TWN-01_08182021	8/18/2021	1016h	Aqueous	Anions, E300.0
web: www.awal-labs.com	2108638-005B	TWN-01_08182021	8/18/2021	1016h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-006A	TWN-02_08182021	8/18/2021	1025h	Aqueous	Anions, E300.0
	2108638-006B	TWN-02_08182021	8/18/2021	1025h	Aqueous	Nitrite/Nitrate (as N), E353.2
I-maifen Oak am	2108638-007A	TWN-60_08182021	8/18/2021	715h	Aqueous	Anions, E300.0
Jennifer Osborn	2108638-007B	TWN-60_08182021	8/18/2021	715h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	2108638-008A	TWN-21_08192021	8/19/2021	855h	Aqueous	Anions, E300.0
	2108638-008B	TWN-21_08192021	8/19/2021	855h	Aqueous	Nitrite/Nitrate (as N), E353.2
Jose Rocha	2108638-009A	TWN-20_08192021	8/19/2021	905h	Aqueous	Anions, E300.0
QA Officer	2108638-009B	TWN-20_08192021	8/19/2021	905h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-010A	TWN-07_08192021	8/19/2021	913h	Aqueous	Anions, E300.0
	2108638-010B	TWN-07_08192021	8/19/2021	913h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-011A	TWN-03_08192021	8/19/2021	922h	Aqueous	Anions, E300.0
	2108638-011B	TWN-03_08192021	8/19/2021	922h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-012A	PIEZ-02_08192021	8/19/2021	935h	Aqueous	Anions, E300.0
	2108638-012B	PIEZ-02_08192021	8/19/2021	935h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-013A	PIEZ-01_08192021	8/19/2021	948h	Aqueous	Anions, E300.0
	2108638-013B	PIEZ-01_08192021	8/19/2021	948h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108638-014A	PIEZ-03A_08192021	8/19/2021	1012h	Aqueous	Anions, E300.0
	2108638-014B	PIEZ-03A_08192021	8/19/2021	1012h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 9/10/2021 Page 2 of 21 All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Tanner Holliday 3rd Quarter Nitrate 2021 2108638
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119	Date of Receipt: Date of Collection: Sample Condition:	8/24/2021 8/17-8/19/2021 Intact
Phone: (801) 263-8686	C-O-C Discrepancies:	None
Toll Free: (888) 263-8686 Fax: (801) 263-8687		rements: The analysis and preparation of all od holding times. All samples were properly
e-mail: awal@awal-labs.com web: www.awal-labs.com	Preparation and Analysis Requirements methods stated on the analytical reports.	s: The samples were analyzed following the
Jennifer Osborn	Analytical QC Requirements: All i requirements were met. All internal standard	nstrument calibration and calibration check d recoveries met method criterion.
Laboratory Director	Batch QC Requirements: MB, LCS, MS,	MSD, RPD:
Jose Rocha QA Officer	indicating that the procedure was free	CS): All LCS recoveries were within control
	RPDs (Relative Percent Difference following exception: the MS per	blicates (MS/MSD): All percent recoveries and ces) were inside established limits, with the recovery for Nitrate-Nitrite on sample ontrol limits due to sample matrix interference.

Corrective Action: None required.

Report Date: 9/10/2021 Page 3 of 21 All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the adventisement, promotion or sale of any product or process, or in connection with the re-publication of this report

100														
					3440 Sc	outh 700 Wes	st							
					Salt Lake	City, UT 84	119				Je	ennifer Os	sborn	
			Pho	ne: (801) 263-	8686, Toll Fre	e: (888) 263-8	686, Fax: (801) 26	63-8687			L	aboratory	Directo	r
							w.awal-labs.com							
					9						Jo	ose Rocha	i	
				~ ~							Q	A Officer	ſ	
American ANALYTICAL LABO	RATORIES			QC	SUMM/	ARY RJ	EPORT							
Client: E	nergy Fuels Resources, In	nc.					Contact:	Tanner H	lolliday					
Lab Set ID: 21	108638						Dept:	WC						
Project: 3r	rd Quarter Nitrate 2021						QC Type:	LCS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R156359 300.0-W	Date Analyzed:	09/06/202	1 1758h										
Chloride		5.06	mg/L	E300_0	0.0198	0.100	5.000	0	101	90 - 110				
Lab Sample ID: Test Code:	LCS-R155863 NO2/NO3-W-353.2	Date Analyzed:	08/24/202	1 1311h										
Nitrate/Nitrite (as	3 N)	1.06	mg/L	E353 2	0.00541	0.0100	1.000	0	106	90 - 110				
Lab Sample ID: Test Code:	LCS-R156020 NO2/NO3-W-353.2	Date Analyzed:	08/27/202	1 840h										
Nitrate/Nitrite (as	s N)	1.09	mg/L	E353.2	0.00541	0.0100	1.000	0	109	90 - 110				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Hojeet.	Sid Quarter Milate 2021	QC Type.	MDER
Project:	3rd Quarter Nitrate 2021	QC Type:	MBI K
Lab Set ID	: 2108638	Dept:	WC
Client:	Energy Fuels Resources, Inc.	Contact:	Tanner Holliday

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R156359 300.0-W	Date Analyzed:	09/06/202	1 1734h										
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-SPLP 300.0-W	Date Analyzed:	09/07/202	1 336h										
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-R155863 NO2/NO3-W-353.2	Date Analyzed:	08/24/202	1 1310h										
Nitrate/Nitrite (as	N)	< 0.0100	mg/L	E353.2	0.00541	0.0100								
Lab Sample ID: Test Code:	MB-FILTERED-R155863 NO2/NO3-W-353.2	Date Analyzed:	08/24/202	1 1347h										
Nitrate/Nitrite (as	N)	< 0.0100	mg/L	E353_2	0.00541	0.0100								
Lab Sample ID: Test Code:	MB-R156020 NO2/NO3-W-353.2	Date Analyzed:	08/27/202	1 839h										
Nitrate/Nitrite (as	N)	< 0.0100	mg/L	E353.2	0.00541	0.0100								

Report Date: 9/10/2021 Page 19 of 21

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

American			Phone	e-mail: awa	Salt Lake (8686, Toll Free	om, web: wwv	119 686, Fax: (801) 20 v.awal-labs.com	63-8687			L	ennifer Os aboratory ose Rocha A Officer	Directo	or
Lab Set ID: 2	nergy Fuels Resources, In 108638 rd Quarter Nitrate 2021	nc.					Contact: Dept: QC Type:	Tanner H WC MS	olliday					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2108638-007AMS 300.0-W	Date Analyzed:												
Chloride Lab Sample ID: Test Code: Chloride	2108638-008AMS 300.0-W	25.3 Date Analyzed: 295	mg/L 09/06/2021 mg/L	E300.0 2311h E300.0	0.0990	0.500	25.00	40.5	101	90 - 110				
Lab Sample ID: Test Code:	2108638-002BMS NO2/NO3-W-353.2	Date Analyzed:			0.990	5.00	230.0	40.5	102	90 - 110				
Nitrate/Nitrite (a	s N)	11.3	mg/L	E353,2	0.0541	0.100	10.00	0.199	111	90 - 110				1
Lab Sample ID: Test Code:	2108638-010BMS NO2/NO3-W-353.2	Date Analyzed:	08/27/2021	959h										

¹- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Tanner Holliday

Project:	3rd Quarter Nitrate 2021	QC Type:	MSD
Lab Set ID:	2108638	Dept:	WC
Client:	Energy Fuels Resources, Inc.	Contact:	Tanno

Analyte		Result	Units	Method	MÐL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2108638-007AMSD 300.0-W	Date Analyzed:	09/06/202	21 2223h										
Chloride		26.2	mg/L	E300_0	0.0990	0.500	25.00	0.0325	105	90 - 110	25,3	3,72	20	
Lab Sample ID: Test Code:	2108638-008AMSD 300.0-W	Date Analyzed:	09/06/202	21 2335h										
Chloride		295	mg/L	E300,0	0.990	5.00	250.0	40.5	102	90 - 110	295	0.216	20	
Lab Sample ID: Test Code:	2108638-002BMSD NO2/NO3-W-353.2	Date Analyzed:	08/24/202	21 1335h										
Nitrate/Nitrite (as	N)	11.2	mg/L	E353.2	0.0541	0.100	10.00	0.199	110	90 - 110	11.3	0.889	10	§
Lab Sample ID: Test Code:	2108638-010BMSD NO2/NO3-W-353.2	Date Analyzed:	08/27/202	21 1001h										
Nitrate/Nitrite (as	N)	68.7	mg/L	E353,2	0.270	0.500	50.00	15.1	107	90 - 110	69.9	1.65	10	

 \S - QC limits are set with an accuracy of two significant figures, therefore the recovery rounds to an acceptable value within the control limits.

Report Date: 9/10/2021 Page 21 of 21

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Americar	West Analytical Labora	tories			Rpt Emailed:		UI Deniso
WORK OJ Client:	RDER Summary Energy Fuels Resources, Inc.					der: 2108638 ate: 9/8/2021	Page 1 of
Client ID: Project: Comments:	ENE300 3rd Quarter Nitrate 2021 QC 3 (no chromatograms). EDD-Deniso	on. CC KWeinel@@	Contact: QC Leve	el: III		ype: Project " samples as MS/MS	D· »/
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	Di, Ki
2108638-001A	TWN-18R_08172021	8/17/2021 0845h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-001B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
2108638-002A	TWN-18_08172021	8/17/2021 0917h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	-
2108638-002B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
2108638-003A	TWN-65_08172021	8/17/2021 0917h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-003B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
2108638-004A	TWN-04_08182021	8/18/2021 0919h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-004B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
2108638-005A	TWN-01_08182021	8/18/2021 1016h	8/24/2021 0940h	300.0-W I SEL Analytes: CL	Aqueous	df - cl	
2108638-005B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
2108638-006A	TWN-02_08182021	8/18/2021 1025h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-006B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
2108638-007A	TWN-60_08182021	8/18/2021 0715h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-007B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	

LABORATORY CHECK: %M C RT C CN TAT QC LUO HOK HOK HOK COC Emailed

WORK O	RDER Summary					Work Order: 210863	8 Page 2 of 2
Client:	Energy Fuels Resources, Inc.					Due Date: 9/8/2021	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	2
2108638-008A	TWN-21_08192021	8/19/2021 0855h	8/24/2021 0940h	300.0-W I SEL Analytes: CL	Aqueous	df - cl	
2108638-008B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/	no3
2108638-009A	TWN-20_08192021	8/19/2021 0905h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-009B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/	no3
2108638-010A	TWN-07_08192021	8/19/2021 0913h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-010B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2.	[/] no3
2108638-011A	TWN-03_08192021	8/19/2021 0922h	8/24/2021 0940h	300.0-W I SEL Analytes: CL	Aqueous	df - cl	
2108638-011B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - 1102	/no3
2108638-012A	PIEZ-02_08192021	8/19/2021 0935h	8/24/2021 0940h	300.0-W I SEL Analytes: CL	Aqueous	df - cl	
2108638-012B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - 1102	/no3
2108638-013A	PIEZ-01_08192021	8/19/2021 0948h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-013B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2	/no3
2108638-014A	PIEZ-03A_08192021	8/19/2021 1012h	8/24/2021 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
2108638-014B			2	NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2	/no3

Analytical Labo 463 W. 3600 S. Saft Lake C	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-6686 Toll Free # (888) 263-8686							CHAIN OF CUSTODY All analysts will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reported using AWAL's standard anal										
Fax # (801) 263-8687 Email www.awal-labs.					QC L					Turn A	tandarc			Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due,	Due Date:			
Client: Energy Fuels Resources, Inc. Address: 6425 S. Hwy. 191 Blanding, UT 84511 Tanner Holliday Contact: Tanner Holliday Phone #: (435) 678-2221 Cell # Email: tbolliday@energyfnels.com; kweinel@energyf Project Name: 3rd Quarter Nitrate 2021 Project #:	nels.com	Time Sampled 845 917 917 919 1016 1025 715 855 905 913	C C 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	w w w w w w w w w w w w w w w w w w w	2	X X X X X X X X X Z (4500 or 300.0)								X Include EDD: LOCUS UPLOAD EXCEL Field Filtered For: For Compliance With: NELAP RCRA CWA SDWA ELAP / A2LA NLLAP Non-Compliance Other: Known Hazards & Sample Comments	Laboratory Use Only Samples Were: Shipped or hand delivered Ambient of Chilled Temperature Coc Tape Was: Bresent on Outer Package N Coc Tape Was: Bresent on Outer Package N Coc Tape Was: Bresent on Outer Package N Coc Tape Was: Bresent on Sample N Coc Tape Was: Bresent on Sample N Coc Tape Was: Bresent on Sample N Coc N C			
TWN-03_08192021 PIEZ-02_08192021	8/19/2021 8/19/2021	922 935	+	-	x x	X X		_		-	-				\cup			
PIEZ-01_08192021	8/19/2021	948	2	-	x	x												
Relinquished by: Signature Tanner Holliday Print Name: Tanner Holiiday Relinquished by: Signature Print Name:	nature AMBR (Multiple nt Name: Tanner Holliday nt Name: Time: 1100 Print Name: Date: Received br: Signature nt Name: Time:			in.		Ha Ha	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	4		Date: Time: Dates Time:		21		Special Instructions:				
Inquished by: Date: Received by: mature Signature int Name: Print Name: ilinquished by: Date: Received by: ilinquished by: Date: Received by: int Name: Signature Signature int Name: Time: Print Name:							/			Date: Time: Date: Time:								

Λ	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686								CHAIN OF CUSTODY All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and report limits (PGL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.										
	Fax # (801) 263-8687 Email av	vai@awal-labs.com				QC	Leve	l:				Turn	Aroun	d Time	:		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on	Due Date:	
	www.awal-labs.co	om			3				Standard					the day they are due.					
Cllent:	Energy Fuels Resources, Inc.			Π													X Include EDD:	Laboratory Use Only	
Address:	6425 S. Hwy. 191					1											LOCUS UPLOAD EXCEL	Samples Were: (1175	
	Blanding, UT 84511	ding, UT 84511															Field Filtered For:	1 Shipped or hand delivered	
Contact:	Tanner Holliday																	2 Ambient & Chilled	
Phone #:	(435) 678-2221 Celi #:	5) 678-2221 Cell #:															For Compliance With:	3 Temperature // 0 *c	
Email:	tholliday@energyfuels.com; kweinel@energyfuel	lliday@energyfuels.com; kweinel@energyfuels.com															CWA	4 Received Broken/Leaking	
Project Name:	3rd Quarter Nitrate 2021				1 - 1											SDWA ELAP/A2LA	(Improperty Sealed)		
Project #					2)	300.0)										NLLAP Non-Compliance	5 Productly Preserved		
PO #:				50		(353.2)	r 300							1			Other:	Checked at bench	
Sampler Name:	Tanner Holliday			Itainei	Sample Matrix	03	00 or										Kennellenede	Y N 6 Received Within	
		Date	Time	Š	nple f	NO2/NO3	(4500										Known Hazards &	Holding Times	
	Sample ID:	Sampled	Sampled	-0	(Internet of the local division of the local		ប	-			_		_	_		_	Sample Comments	. ♡ ^	
4 PIEZ-03A_081920	-03A_08192021 8/19/2021 1012				w	Х	x	-			_	_		2		_			
15				Н				-				\rightarrow	_	_	+	_		COC Tape Was: 1	
16				Н				_				_	_					Y N NA	
17				Н					-		_	_	_	_		_		2 Unbroken on Outer Package	
		h		Н				_			_	\rightarrow	_	_				3 Present on Sample	
		<u> </u>		Н							-	\rightarrow	_		+			Y N (NA)	
20		1		Н	\square			-			_	\rightarrow	_	_				4 Unbroken on Sample Y N (NA)	
		 		Н		_	-	-	_		_	_	_	_		_			
	and the second	ļ		Ц		_					-	_	_	_				Discrepancies Between Sample Labels and COC Record?	
23				\square						\square		\rightarrow	_					Y (N)	
24				Ц								_				-		, Y	
		ļ		Ц			1-2-1	-			_	_							
26													_						
Relinquished by: Signature	sture Same Man Statute)ete:					Special Instructions:		
Print Name:	Tanner Holliday		Print Name:									īme:							
Relinquished by: Signature		Date:	Received by:	eli	n		4			1		Dato: 8							
Print Name:		Time: Date:	Print Name: 2 Received by:	la	44	2	Ha	They is	1-			īme: ´	4	740					
Relinquished by: Signature						/			_	Date:									
Print Name:								- 153			_	Tme:							
Relinquished by: Signature	Signature Signature																		
Print Name:	Time:					Time:													

Lab Set ID: 2/08/03/8 pH Lot #: (0)00

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	え	3	4	5	6	7	8	9	10	11	12	13	14		
Ammonia	pH <2 H ₂ SO ₄																
COD	pH <2 H ₂ SO ₄																
Cyanide	pH >10 NaOH																
Metals	pH <2 HNO3																
NO ₂ /NO ₃	pH <2 H ₂ SO ₄	Yes	Vec	Vis	Ves	Yes	1/15	145	Yes	Ves	Vis	1/25	Ves	Yes	Ves		
0 & G	pH <2 HCL	1	1	1	1	1	P		P	1	1	1	1	1	1		
Phenols	pH <2 H ₂ SO ₄		-	-												 	
Sulfide	pH >9 NaOH, ZnAC																
TKN	pH <2 H ₂ SO ₄																
T PO ₄	pH <2 H ₂ SO ₄																
Cr VI+	pH >9 (NH4)2SO4																
					-									-		 	
											1						
											1						
								-		-		-				 	
																	1

Procedure:

Pour a small amount of sample in the sample lid 1)

Pour sample from lid gently over wide range pH paper 2)

3) Do Not dip the pH paper in the sample bottle or lid

4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above

Flag COC, notify client if requested 5)

Place client conversation on COC 6)

7) Samples may be adjusted

All samples requiring preservation Frequency:

- * The sample required additional preservative upon receipt.
- The sample was received unpreserved. +
- The sample was received unpreserved and therefore preserved upon receipt.
- The sample pH was unadjustable to a pH < 2 due to the sample matrix. #
- The sample pH was unadjustable to a pH > due to the sample matrix interference. ٠

Tanner Holliday Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

	RE: 3rd Quarter Chloroform 2021	
3440 South 700 West	Dear Tanner Holliday:	Lab Set ID: 2108726
Salt Lake City, UT 84119	American West Analytical Laboratories received s presented in the following report.	ample(s) on 8/26/2021 for the analyses
Phone: (801) 263-8686	American West Analytical Laboratories (AWAL) i Environmental Laboratory Accreditation Program	1 No. 2 100 100 100 100 100 100
Toll Free: (888) 263-8686	state accredited in Colorado, Idaho, New Mexico,	. ,
Fax: (801) 263-8687 >-mail: awal@awal-labs.com web: www.awal-labs.com	All analyses were performed in accordance to the l otherwise. Accreditation scope documents are ava questions or concerns regarding this report please f	NELAP protocols unless noted ilable upon request. If you have any
Jennifer Osborn Laboratory Director Jose Rocha QA Officer	The abbreviation "Surr" found in organic reports in intentionally added by the laboratory to determine purging efficiency. The "Reporting Limit" found of practical quantitation limit (PQL). This is the mini- reported by the method referenced and the sample confused with any regulatory limit. Analytical resu- figures for quality control and calculation purposes	sample injection, extraction, and/or on the report is equivalent to the imum concentration that can be matrix. The reporting limit must not be ults are reported to three significant

Thank You,

Jose G	Digitally signed by Jose G. Rocha
Rocha	Date: 2021.09.13 14:03:39 -06'00'

Approved by

Laboratory Director or designee

Client:

SAMPLE SUMMARY

Energy Fuels Resources, Inc.

Contact: Tanner Holliday

American West	Project:	3rd Quarter Chloroform 202		(amer Homday
	Lab Set ID:	2108726				
	Date Received:	8/26/2021 1025h				
	Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
3440 South 700 West	2108726-001A	TW4-25 08242021	8/24/2021	915h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	2108726-001B	TW4-25 08242021	8/24/2021	915h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-001C	TW4-25_08242021	8/24/2021	915h	Aqueous	VOA by GC/MS Method 8260D/5030C
Phone: (801) 263-8686	2108726-002A	TW4-40_08242021	8/24/2021	1224h	Aqueous	Anions, E300.0
	2108726-002B	TW4-40_08242021	8/24/2021	1224h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	2108726-002C	TW4-40_08242021	8/24/2021	1224h	Aqueous	VOA by GC/MS Method 8260D/5030C
e-mail: awal@awal-labs.com	2108726-003A	TW4-24_08242021	8/24/2021	926h	Aqueous	Anions, E300.0
	2108726-003B	TW4-24_08242021	8/24/2021	926h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	2108726-003C	TW4-24_08242021	8/24/2021	926h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-004A	TW4-19_08242021	8/24/2021	1240h	Aqueous	Anions, E300.0
Jennifer Osborn	2108726-004B	TW4-19_08242021	8/24/2021	1240h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	2108726-004C	TW4-19_08242021	8/24/2021	1240h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-005A	TW4-01_08242021	8/24/2021	1158h	Aqueous	Anions, E300.0
Jose Rocha	2108726-005B	TW4-01_08242021	8/24/2021	1158h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	2108726-005C	TW4-01_08242021	8/24/2021	1158h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-006A	MW-26_08242021	8/24/2021	958h	Aqueous	Anions, E300.0
	2108726-006B	MW-26_08242021	8/24/2021	958h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-006C	MW-26_08242021	8/24/2021	958h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-007A	TW4-41_08242021	8/24/2021	1207h	Aqueous	Anions, E300.0
	2108726-007B	TW4-41_08242021	8/24/2021	1207h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-007C	TW4-41_08242021	8/24/2021	1207h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-008A	TW4-21_08242021	8/24/2021	905h	Aqueous	Anions, E300.0
	2108726-008B	TW4-21_08242021	8/24/2021	905h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-008C	TW4-21_08242021	8/24/2021	905h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-009A	TW4-02_08242021	8/24/2021	1015h	Aqueous	Anions, E300.0
	2108726-009B	TW4-02_08242021	8/24/2021	1015h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-009C	TW4-02_08242021	8/24/2021	1015h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-010A	TW4-04_08242021	8/24/2021	1214h	Aqueous	Anions, E300.0

Report Date: 9/13/2021 Page 2 of 46 All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client: Energy Fuels Resources, Inc. **Project:** 3rd Quarter Chloroform 2021 Lab Set ID: 2108726 Date Received: 8/26/2021 1025h

Contact: Tanner Holliday

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
	2108726-010B	TW4-04_08242021	8/24/2021	1214h	Aqueous	Nitrite/Nitrate (as N), E353.2
3440 South 700 West	2108726-010C	TW4-04_08242021	8/24/2021	1214h	Aqueous	VOA by GC/MS Method 8260D/5030C
Salt Lake City, UT 84119	2108726-011A	MW-04_08242021	8/24/2021	1150h	Aqueous	Anions, E300.0
	2108726-011B	MW-04_08242021	8/24/2021	1150h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-011C	MW-04_08242021	8/24/2021	1150h	Aqueous	VOA by GC/MS Method 8260D/5030C
Phone: (801) 263-8686	2108726-012A	TW4-39_08242021	8/24/2021	951h	Aqueous	Anions, E300.0
Toll Free: (888) 263-8686	2108726-012B	TW4-39_08242021	8/24/2021	951h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687 >-mail: awal@awal-labs.com	2108726-012C	TW4-39_08242021	8/24/2021	951h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-013A	TW4-11_08242021	8/24/2021	1006h	Aqueous	Anions, E300.0
web: www.awal-labs.com	2108726-013B	TW4-11_08242021	8/24/2021	1006h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-013C	TW4-11_08242021	8/24/2021	1006h	Aqueous	VOA by GC/MS Method 8260D/5030C
Jennifer Osborn	2108726-014A	TW4-22_08242021	8/24/2021	935h	Aqueous	Anions, E300.0
	2108726-014B	TW4-22_08242021	8/24/2021	935h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	2108726-014C	TW4-22_08242021	8/24/2021	935h	Aqueous	VOA by GC/MS Method 8260D/5030C
Jose Rocha	2108726-015A	TW4-37_08242021	8/24/2021	943h	Aqueous	Anions, E300.0
QA Officer	2108726-015B	TW4-37_08242021	8/24/2021	943h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-015C	TW4-37_08242021	8/24/2021	943h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-016A	TW4-60_08242021	8/24/2021	1300h	Aqueous	Anions, E300.0
	2108726-016B	TW4-60_08242021	8/24/2021	1300h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2108726-016C	TW4-60_08242021	8/24/2021	1300h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2108726-017A	Trip Blank	8/24/2021	905h	Aqueous	VOA by GC/MS Method 8260D/5030C

Report Date: 9/13/2021 Page 3 of 46 All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:		Tanner H	uels Resources, Inc. Iolliday ter Chloroform 2021
3440 South 700 West	Sample Receipt Information	ation:		
Salt Lake City, UT 84119	Date of Receipt: Date of Collection Sample Condition	on: on:	8/26/202 8/24/202 Intact	
Phone: (801) 263-8686	C-O-C Discrepa	incles:	None	
Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com				e analysis and preparation of all nes. All samples were properly
web: www.awal-labs.com	Preparation and Analy methods stated on the ana		The samp	les were analyzed following the
Jennifer Osborn Laboratory Director	Analytical QC Requirements were met. A Batch QC Requirement	All internal standard	recoveries m	libration and calibration check et method criterion.
Jose Rocha QA Officer	indicating that th Laboratory Con	e procedure was free	from contar S): All LC	S recoveries were within control
		Percent Difference		(ISD): All percent recoveries and side established limits, with the
	Sample ID	Analyte	QC	Explanation
	2108726-001B	Nitrate/Nitrite	MS/MSD	Sample matrix interference
	2108726-005B	Nitrate/Nitrite	MS/MSD	Sample matrix interference
	2108726-015B	Nitrate/Nitrite	MS	High analyte concentration
				h

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits.

Corrective Action: None required.

Report Date: 9/13/2021 Page 4 of 46 All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	Energy Fuels Resources, Inc.		Contact:	Tanner Holliday
Lab Set ID	: 2108726]	Dept:	WC
Project:	3rd Quarter Chloroform 2021		QC Type:	LCS
		Reporting Amo	unt Spiked	Spike Ref.

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
LCS-R156360 300.0-W	Date Analyzed:	09/07/202	1 600h										
	5.09	mg/L	E300,0	0.0198	0.100	5.000	0	102	90 - 110				
LCS-R156465 300.0-W	Date Analyzed:	09/08/202	1 2345h							_			
	5,12	mg/L	E300,0	0.0198	0.100	5.000	0	102	90 - 110				
LCS-R156021 NO2/NO3-W-353.2	Date Analyzed:	08/27/202	1 920h										
s N)	1.07	mg/L	E353,2	0.00541	0.0100	1.000	0	107	90 - 110				
LCS-R156022 NO2/NO3-W-353.2	Date Analyzed:	08/27/202	1 100 8h										
s N)	1.07	mg/L	E353.2	0.00541	0.0100	1.000	0	107	90 - 110				
	300.0-W LCS-R156465 300.0-W LCS-R156021 NO2/NO3-W-353.2 NO2/NO3-W-353.2 NO2/NO3-W-353.2	LCS-R156360 300.0-W Date Analyzed: 5.09 5.09 LCS-R156465 300.0-W Date Analyzed: 5.12 5.12 LCS-R156021 NO2/NO3-W-353.2 Date Analyzed: N) 1.07 LCS-R156022 NO2/NO3-W-353.2 Date Analyzed:	LCS-R156360 Date Analyzed: 09/07/202 300.0-W 5.09 mg/L LCS-R156465 Date Analyzed: 09/08/202 300.0-W 5.12 mg/L LCS-R156021 Date Analyzed: 08/27/202 NO2/NO3-W-353.2 1.07 mg/L LCS-R156022 Date Analyzed: 08/27/202 NO2/NO3-W-353.2 Date Analyzed: 08/27/202	LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h 5.09 mg/L E300.0 LCS-R156465 300.0-W Date Analyzed: 09/08/2021 2345h S00.0-W 5.12 mg/L E300.0 LCS-R156021 NO2/NO3-W-353.2 Date Analyzed: 08/27/2021 920h SN) 1.07 mg/L E353.2 LCS-R156022 NO2/NO3-W-353.2 Date Analyzed: 08/27/2021 1008h	LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h 5.09 mg/L E300.0 0.0198 LCS-R156465 300.0-W Date Analyzed: 09/08/2021 2345h 0.0198 LCS-R156021 N02/N03-W-353.2 Date Analyzed: 08/27/2021 920h 0.0198 LCS-R156022 N02/N03-W-353.2 1.07 mg/L E353.2 0.00541	Result Units Method MDL Limit LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h	Result Units Method MDL Limit LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h 5.000	Result Units Method MDL Limit Amount LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h Amount 5.09 mg/L E300.0 0.0198 0.100 5.000 0 LCS-R156465 300.0-W Date Analyzed: 09/08/2021 2345h 0	Result Units Method MDL Limit Amount %REC LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h 0 102 5.09 mg/L E300.0 0.0198 0.100 5.000 102 LCS-R156465 300.0-W Date Analyzed: 09/08/2021 2345h 5.12 mg/L E300.0 0.0198 0.100 5.000 0 102 LCS-R156021 NO2/NO3-W-353.2 Date Analyzed: 08/27/2021 920h 5.102 0.00541 0.0100 1.000 0 107 LCS-R156022 NO2/NO3-W-353.2 Date Analyzed: 08/27/2021 108h 0.00541 0.0100 1.000 0 107	Result Units Method MDL Limit Amount %REC Limits LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h 00108 0.100 5.000 0 102 90 - 110 LCS-R156465 300.0-W Date Analyzed: 09/08/2021 2345h 0.0198 0.100 5.000 0 102 90 - 110 LCS-R15605 300.0-W Date Analyzed: 09/08/2021 2345h 0.0198 0.100 5.000 0 102 90 - 110 LCS-R15605 300.0-W Date Analyzed: 08/27/2021 920h V V V 90 - 110 LCS-R156021 NO2/NO3-W-353.2 Date Analyzed: 08/27/2021 920h V V V 90 - 110 LCS-R156022 NO2/NO3-W-353.2 Date Analyzed: 08/27/2021 1008h 0.0100 1.000 0 107 90 - 110	Result Units Method MDL Limit Amount %REC Limits Amt LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h 0 1.02 90 - 110 90	Result Units Method MDL Limit Amount %REC Limits Amt % RPD LCS-R156360 300.0-W Date Analyzed: 09/07/2021 600h <td< td=""><td>Result Units Method MDL Limit Amount %REC Limits Amt % RPD Limit LCS-R156360 300.0-W Date Analyzee 09/07/2021 600h Solo 0 102 90-110 Solo Solo Solo 0 102 90-110 Solo Solo<</td></td<>	Result Units Method MDL Limit Amount %REC Limits Amt % RPD Limit LCS-R156360 300.0-W Date Analyzee 09/07/2021 600h Solo 0 102 90-110 Solo Solo Solo 0 102 90-110 Solo Solo<

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive server privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Report Date: 9/13/2021 Page 39 of 46

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

			Reporting	Amount Spiked	Spike Ref.	RPD Ref.	RPD	
Project:	3rd Quarter Chloroform 2021			QC Type:	MBLK			
Lab Set ID	: 2108726			Dept:	WC			
Client:	Energy Fuels Resources, Inc.			Contact:	Tanner Holliday			

Analyte		Result	Units	Method	MDL	Limit	Amount Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: Test Code:	MB-R156360 300,0-W	Date Analyzed:	09/07/202	21 536h										
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-R156465 300.0-W	Date Analyzed:	09/08/202	21 2321h										
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-R156021 NO2/NO3-W-353.2	Date Analyzed:	08/27/202	21 919h										
Nitrate/Nitrite (a	s N)	< 0.0100	mg/L	E353,2	0.00541	0.0100								
Lab Sample ID: Test Code:	MB-R156022 NO2/NO3-W-353.2	Date Analyzed:	08/27/202	21 1007h										
Nitrate/Nitrite (a	s N)	< 0.0100	mg/L	E353.2	0.00541	0.0100								

Report Date: 9/13/2021 Page 40 of 46

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	Energy Fuels Resources, Inc.				Contact:	Tanner Hollida	(
Lab Set ID	: 2108726				Dept:	WC				
Project:	3rd Quarter Chloroform 2021				QC Type:	MS				
			Re	porting	Amount Spiked			RPD Ref.	RPD	V+1

					MDL	Limit		Amount	%REC	Limits	Amt	% RPD	Limit	Qual
	2108726-003AMS 300.0-W	Date Analyzed:	09/07/202	1 824h										
Chloride		2,030	mg/L	E300.0	3.96	20.0	1,000	1010	102	90 - 110				
	2108726-016AMS 300.0-W	Date Analyzed:	09/09/202	1 858h										
Chloride		25.3	mg/L	E300.0	0.0990	0.500	25,00	0	101	90 - 110				
	2108726-001BMS NO2/NO3-W-353.2	Date Analyzed:	08/27/202	21 954h							_			
Nitrate/Nitrite (as]	N)	12.0	mg/L	E353.2	0.0541	0.100	10.00	0.793	112	90 - 110).
	2108726-005BMS NO2/NO3-W-353.2	Date Analyzed:	08/27/202	21 1010h										
Nitrate/Nitrite (as]	N)	12.7	mg/L	E353_2	0.0541	0.100	10.00	1.38	113	90 - 110				E.
	2108726-015BMS NO2/NO3-W-353.2	Date Analyzed:	08/27/202	21 1048h										
Nitrate/Nitrite (as]	N)	80.8	mg/L	E353.2	0.270	0.500	50.00	25.8	110	90 - 110				2

'- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Report Date: 9/13/2021 Page 41 of 46

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Tanner Holliday

WC

Contact:

QC Type: MSD

Dept:

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	2108726
Project:	3rd Quarter Chloroform 2021

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2108726-003AMSD 300.0-W	Date Analyzed:	09/07/202	1 848h										
Chloride		2,070	mg/L	E300.0	3.96	20.0	1,000	1010	106	90 - 110	2030	1.95	20	
Lab Sample ID: Test Code:	2108726-016AMSD 300.0-W	Date Analyzed:	09/09/202	l 922h										
Chloride		25.3	mg/L	E300.0	0.0990	0.500	25.00	0	101	90 - 110	25.3	0.192	20	
Lab Sample ID: Test Code:	2108726-001BMSD NO2/NO3-W-353.2	Date Analyzed:	08/27/202	l 955h										
Nitrate/Nitrite (as	s N)	11.9	mg/L	E353.2	0.0541	0.100	10.00	0.793	111	90 - 110	12	0,261	10	4
Lab Sample ID: Test Code:	2108726-005BMSD NO2/NO3-W-353.2	Date Analyzed:	08/27/202	1 1011h										
Nitrate/Nitrite (as	5 N)	12.5	mg/L	E353.2	0.0541	0,100	10.00	1.38	111	90 - 110	12.7	1.39	10	3
Lab Sample ID: Test Code:	2108726-015BMSD NO2/NO3-W-353,2	Date Analyzed:	08/27/202	1 1049h										
Nitrate/Nitrite (as	5 N)	75.5	mg/L	E353.2	0.270	0.500	50.00	25.8	99.4	90 - 110	80.8	6.80	10	2

'- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Report Date: 9/13/2021 Page 42 of 46

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Americar	West Analytical Laborate	ories			Rpt Emailed:		UL Denison
WORK OI	RDER Summary				Work Order:	2108726	Page 1 of 3
Client:	Energy Fuels Resources, Inc.				Due Date:	9/10/2021	
Client ID:	ENE300		Contact:	Tanner Holliday			
Project:	3rd Quarter Chloroform 2021		QC Leve	l: III	WO Type:	Project	
Comments:	QC 3 (no chromatograms). EDD-Denison.	CC KWeinel@e	energyfuels.com;	USE PROJECT for special	DLs). Do not use "*R_" sa	mples as MS/MSI	D.; of
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
2108726-001A	TW4-25_08242021	8/24/2021 0915h	8/26/2021 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	1
2108726-001B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N			
2108726-001C				8260D-W-DEN100 Test Group: 8260D-W-DEN1	00; # of Analytes: 4 / # of Surr: 4	VOCFridge	3
2108726-002A	TW4-40_08242021	8/24/2021 1224h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	1
				1 SEL Analytes: CL	and the second sec		
2108726-002B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
2108726-002C				8260D-W-DEN100		VOCFridge	3
			A.1. (64)	Test Group: 8260D-W-DENI	00; # of Analytes: 4 / # of Surr:	4	
2108726-003A	TW4-24_08242021	8/24/2021 0926h	8/26/2021 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	1
2108726-003B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N			
2108726-003C				8260D-W-DEN100 Test Group: 8260D-W-DENI	00; # of Analytes: 4 / # of Surr:	VOCFridge	3
2108726-004A	TW4-19_08242021	8/24/2021 1240h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	1
2108726-004B				1 SEL Analytes: CL NO2/NO3-W-353.2		df - no2/no3	
2108/20-0040			2	1 SEL Analytes: NO3NO2N			
2108726-004C	-	×	¥.	8260D-W-DEN100		VOCFridge	3
				Test Group: 8260D-W-DEN	00; # of Analytes: 4 / # of Surr:	4	
2108726-005A	TW4-01_08242021	- 8/24/2021 1158h	8/26/2021 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
2108726-005B				NO2/NO3-W-353.2		df - no2/no3	10 10
2100726 0050				I SEL Analytes: NO3NO2N 8260D-W-DEN100		VOCFridge	
2108726-005C		a		8260D-W-DEN100 Test Group: 8260D-W-DEN	100 11 54 14 4/8 55		

LABORATORY CHECK: %M C RT CN TAT C QC LUO HOK HOK HOK COC Emailed

WORK OR	DER Summary				V	Work Order: 2108726	Page 2 of 3
Client:	Energy Fuels Resources, Inc.					Due Date: 9/10/2021	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
2108726-006A	MW-26_08242021	8/24/2021 0958h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	1
				1 SEL Analytes: CL			
2108726-006B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N			
2108726-006C				8260D-W-DEN100		VOCFridge	1
				Test Group: 8260D-W-DEN	100; # of Analyte	s: 4 / # of Surr: 4	
2108726-007A	TW4-41_08242021	8/24/2021 1207h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	1
				1 SEL Analytes: CL			
2108726-007B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N			
2108726-007C				8260D-W-DEN100		VOCFridge	1
				Test Group: 8260D-W-DEN	1100; # of Analyte	s: 4 / # of Surr: 4	
2108726-008A	TW4-21_08242021	8/24/2021 0905h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	
	_			1 SEL Analytes: CL			
2108726-008B				NO2/NO3-W-353.2		df - no2/no3	
	8			1 SEL Analytes: NO3NO2N	[
2108726-008C				8260D-W-DEN100		VOCFridge	
				Test Group: 8260D-W-DEN	1100; # of Analyte	es: 4 / # of Surr: 4	
2108726-009A	TW4-02_08242021	8/24/2021 1015h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	
				1 SEL Analytes: CL			
2108726-009B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N	τ		
2108726-009C				8260D-W-DEN100		VOCFridge	
				Test Group: 8260D-W-DEN	1100; # of Analyte	es: 4 / # of Surr: 4	
2108726-010A	TW4-04_08242021	8/24/2021 1214h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	
	-			I SEL Analytes: CL	-		
2108726-010B				NO2/NO3-W-353.2		df - no2/no3	
				I SEL Analytes: NO3NO2N	T		
2108726-010C				8260D-W-DEN100		VOCFridge	
			6	Test Group: 8260D-W-DEI	V100; # of Analyte	es: 4 / # of Surr: 4	
2108726-011A	MW-04_08242021	8/24/2021 1150h	8/26/2021 1025h	300.0-W	Aqueous	df - wc	
				1 SEL Analytes: CL			
2108726-011B				NO2/NO3-W-353.2		df - no2/no3	
0				1 SEL Analytes: NO3NO2N	7		
2108726-011C			1	8260D-W-DEN100	· · · ·	VOCFridge	
				Test Group: 8260D-W-DE	N100; # of Analyt		

WORK O	RDER Summary Energy Fuels Resources, 2	Inc.					Work Order: 2108726 Due Date: 9/10/2021	Page 3 of 3
Sample ID	Client Sample ID		Collected Date	Received Date	Test Code	Matrix	Sel Storage	
2108726-012A	TW4-39_08242021		8/24/2021 0951h	8/26/2021 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
2108726-012B					NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	V	df - 102/103	
2108726-012C					8260D-W-DEN100 Test Group: 8260D-W-DEI	N100; # of Analy	VOCFridge vtes: 4 / # of Surr: 4	
2108726-013A	TW4-11_08242021		8/24/2021 1006h	8/26/2021 1025h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
2108726-013B					NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	V	df - no2/no3	
2108726-013C					8260D-W-DEN100 Test Group: 8260D-W-DE	N100; # of Analy	VOCFridge ytes: 4 / # of Surr: 4	
2108726-014A	TW4-22_08242021		8/24/2021 0935h	8/26/2021 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
2108726-014B	3				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N	v	df - no2/no2	
2108726-014C					8260D-W-DEN100 Test Group: 8260D-W-DE		VOCFridge tytes: 4 / # of Surr: 4	
2108726-015A	TW4-37_08242021		8/24/2021 0943h	8/26/2021 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
2108726-015B					NO2/NO3-W-353.2 1 SEL Analytes: NO3NO21	N	df - no2/no.	3
2108726-015C					8260D-W-DEN100 Test Group: 8260D-W-DE		VOCFridge Sytes: 4 / # of Surr: 4	
2108726-016A	TW4-60_08242021	5	8/24/2021 1300h	8/26/2021 1025h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
2108726-016B					NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2	N	df - no2/no	3
2108726-016C					8260D-W-DEN100 Test Group: 8260D-W-DE		VOCFridge	
2108726-017A	Trip Blank	9 9	8/24/2021 0905h	8/26/2021 1025h	8260D-W-DEN100 Test Group: 8260D-W-DE	Aqueous	VOCFridge lytes: 4 / # of Surr: 4	3

Printed: 08/26/21 14:01

904.04

20.00

LABORATORY CHECK: %M 🖂 RT 🔄 CN 🗌 TAT 🗌 QC 🔄 LUO 🗂 HOK____ HOK____ HOK____ COC Emailed

Λ	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 Fax # (801) 263-8687 Email awal@awal-labs.com									P accredit	ed metho	ds and all		ported us	ng AWAL's standard analyte lists and reporting ind/or attached docurrientation,	AWAL Lab Sample Set # Page 1 of 2
	Fax # (801) 263-8687 Email a www.awal-tabs.c	-				QC L	evel:	:				Around Standar	i Time: d		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
				h	Т	-	-			1		T	TT			
cierit	Energy Fuels Resources, Inc.			11											X Include EDD: LOCUS UPLOAD	Laboratory Use Only
Audress.	6425 S. Hwy. 191			11											EXCEL Field Filtered For:	Samples Wore:
-	Blanding, UT 84511			11												Shipped or hand delivered
-	Tanner Holliday														For Compliance With:	2 Ambient of Chilled
Filone #.	(435) 678-2221 Cell #:			11											NELAP RCRA	3 Temperature
	tholliday@energyfnels.com; kweinel@energyfu	els.com		11											CWA SDWA	4 Received Broken/Leaking (Improperly Sealed)
Project Name:	3rd Quarter Chloroform 2021														ELAP/A2LA	Y N
Project #:						3.2)	300.0)								Non-Compliance Other:	5 Property Preserved
PO #:				50	X	(35.	5	(8260C)								Ghecked at bench
Sampler Name:	Tanner Holliday			ntain	Matrix	EON	(4500	(826							Known Hazards	Y N 6 Received Within
	Sample ID:	Date Sampled	Time Sampled	# of Co	Sample	NO2/NO3 (353.2)	CI (4.	Vocs							& Sample Comments	
TW4-25_08242021		8/24/2021	915	5	w	x	х	X		1.1						
TW4-40_0824202 1		8/24/2021	1224	5	w	x	х	X								COC Tape Was:
TW4-24_08242021		8/24/2021	926	5	w	x	х	x								1 Bresent on Outer Package
TW4-19_08242021		8/24/2021	1240	5	w	х	х	X								2 Unbroken on Outer Package
TW4-01_08242021		8/24/2021	1158	5	w	x	x	x								
MW-26_08242021		8/24/2021	958	5	w	x	х	X								3 Present on Sample Y N NA
TW4-41_08242021		8/24/2021	1207	5	w	x	х	X		1		1				4 Unbroken on Sample
TW4-21_0824202 1		8/24/2021	905	5	w	x	x	X								Y N (NA)
TW4-02_08242021		8/24/2021	1015	5	w	x	х	x								Discrepancies Between Sample
TW4-04_08242021		8/24/2021	1214	5	w	x	х	X								Labels and COC Record?
MW-04_08242021		8/24/2021	1150	5	w	х	х	x								
TW4-39_08242021		8/24/2021	951			х	х	X								
TW4-11_08242021		8/24/2021	1006	5	w	х	х	x								
Relinquished by:	nere Hollehory	Date: 8/25/2021	Received by: Signature								Date:				Special Instructions:	
	Tanner Holliday	Time: 1100	Print Name:								Time:					
Relinquished by: Signature		Date:	Received by: Signature	Se.	l	:ha		4	in	1	Date:	1261	21		See the Analytical Scope of W analyte list.	ork for Reporting Limits and V
Print Name:		Tlme:	Print Name:	E1			+	tan	The second	1	Time:/		2.5			
Relinquished by: Signature		Date:	Received by: Signature		maate			1		/	Date:					
Print Name:		Time:	Print Name:								Time:					
Relinguished by: Signature		Date:	Received by: Signature								Date:					
Print Name:		Time;	Print Name:								Time:					

Face (40) (25.60%) Data and generalization Data from compared to be marked by finght on the m	Part (#) 1054/f End accigonablescon OC Level: Turn Account Time: Distance Distance Distance Distance Simular Simular Simular Simular Simular Simular Distance Distance Distance Citer Simular Simular Simular Simular Simular Simular Distance Distance Construction Simular Simular Simular Simular Simular Distance Distance Construction Construction Construction Construction Construction Simular Simular Simular Distance		American West Analytical Laboratories 463 W, 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 Eav # (801) 263-8687 Email avai@available.com				anal	ysis wil				ELAP a	ccredite	d metho	ods and a		be repor	ted usin	g AWAL's standard analyte lisis and reporting d/or attached documentation.	2/() 8 72 (2 AWAL Lab Sample Set # Page 2 of 2
W/W Bargy Puela Resources, loc. Stindard Bargy Puela Resources, loc. Agence 628 56. Hey, 191 Banding, UT 84511 Cold Windows Banding, UT 84511 Gene Banding, UT 84511 Cold Windows Banding, UT 84511 Banding, UT 84511 Gene Tanser Builday Cold Windows Cold Windows Banding, UT 84511 Cold Windows Series Mallary Banzghat, cons, banchadganzghath, cons Banding, UT 84511 Cold Windows Banding, UT 84511 Cold Windows Per Company Wint: Cold Wint Per Company Wint: Cold Wint Wint: Cold	WW.AND ABD. COM 3 Stardyr But at few and. Come: Exorgyr Public Resources, Inc.		Fax # (801) 263-8687 Email a	awai@awal-labs.com		Γ		QC	Leve	l:				Turn	Arour	nd Time	e:			Due Date:
Adverse 6428 S. Hey. 191 Blanding, UT 94511 Blanding, UT 94511 Contex Tanare Holiday Proves (438) 678-2221 Contex Tanare Holiday Proves Malare Holiday Proves Sardgenerghele.com; berefedgenerghele.com Sarger Name Tanare Holiday Proves Tanare Holiday Sarger Name Tanare Holiday TYM-42.0842021 Binzhele Sampled Sarger Name Sample D: Sample D: Sample d: Sampled Sampled Sarger Name S/24/2021 Sarger Name S/24/2021 <t< td=""><td>August 6425 8. Hay. 19.1 Income fieldsdy Income fieldsdy Binning, UT 94511 Date Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Temper field Sample Annue Income fieldsdy Income fieldsdy Prove: Temper field Sample Annue Income fieldsdy Income fieldsdy Sample Name Sample Annue Sample Annue Income fieldsdy Income fieldsdy TW+420,08242021 Sold X242021 Sold X242021 Sold X X X Income field Income fieldsdy TW+420,08242021 Sold X242021 Sold X X X Income field Income fieldsdy Income fieldsdy TW+420,08242021 Sold X242021 Sold X X X Income fieldsdy Income fieldsdy Income fieldsdy Income fieldsdy TW+420,08242021 <td< td=""><td>_</td><td>www.awal-labs.o</td><td>com</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>Standa</td><td>ard</td><td></td><td></td><td></td><td></td></td<></td></t<>	August 6425 8. Hay. 19.1 Income fieldsdy Income fieldsdy Binning, UT 94511 Date Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Hanse fieldsdy Coll & Income fieldsdy Income fieldsdy Prove: Temper field Sample Annue Income fieldsdy Income fieldsdy Prove: Temper field Sample Annue Income fieldsdy Income fieldsdy Sample Name Sample Annue Sample Annue Income fieldsdy Income fieldsdy TW+420,08242021 Sold X242021 Sold X242021 Sold X X X Income field Income fieldsdy TW+420,08242021 Sold X242021 Sold X X X Income field Income fieldsdy Income fieldsdy TW+420,08242021 Sold X242021 Sold X X X Income fieldsdy Income fieldsdy Income fieldsdy Income fieldsdy TW+420,08242021 <td< td=""><td>_</td><td>www.awal-labs.o</td><td>com</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>Standa</td><td>ard</td><td></td><td></td><td></td><td></td></td<>	_	www.awal-labs.o	com					3						Standa	ard				
Address: 6420:5: https://191 Image: Harship: (US 48611) Image: Harship: (US 4861	Addess: 642.9. https://1914 EXCEL Path Read 7: 10 and 10 a	Client:	Energy Fuels Resources, Inc.																	Laboratory Use Only
Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Cotto: Image: VI 94911 Image: VI 94911 Image: VI 94911 Cotto: Image: VI 94911 Image: VI 94911 Image: VI 94911 Cotto: Image: VI 94911 Image: VI 94911 Image: VI 94911 Cotto: Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94911 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 94111 Image: VI 941111 Image: VI 941111 Imag	Junnary 1 = Strong	Address:	6425 S. Hwy. 191												- 3				EXCEL	Samples Were:
Procest (435) 678-2221 Col # Col # Non-Graphane With: Procest Addition globane grant and the second sec	Provide [438] 678-2221 Cit #		Blanding, UT 84511																Field Filtered For:	1 Shipped or hand delivered
Horas (1995) (1995) Call &	Fore & [480] 015-2221 Col #	Contact:	Tanner Holliday																	2 Ambient of Chilled
Ensite Unstand general general scale Image: Control of the scale scale of the	Email Construction Provident by Functional working production Provident by Function	Phone #:	(435) 678-2221 Cell #:															1	NELAP	3 Temperature The °C
Project #	Project # Image: Transmitter Project #	Email:		uels.com		11								1					CWA	4 Received Broken/Leaking
Project #: Image: Sample D: Date Sample d: Time Sample d: <	Propert # Propert # <t< td=""><td>Project Name:</td><td>3rd Quarter Chloroform 2021</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td></td><td>ELAP / A2LA</td><td>(Improperly Sealed) Y N</td></t<>	Project Name:	3rd Quarter Chloroform 2021													8			ELAP / A2LA	(Improperly Sealed) Y N
TW-22 08242021 8/24/2021 935 5 W X X V Output for the second of the formation of the format	Control D: Control D: Control D: Control D: Control D: Control D: TW4-22_08242021 6/24/2021 936 6 X X X X Control D:	Project #:						(7	0.0)										Non-Compliance	
TW-22 08242021 8/24/2021 935 5 W X X V Output for the second of the formation of the format	Control D: Control D: Control D: Control D: Control D: Control D: TW4-22_08242021 6/24/2021 936 6 X X X X Control D:					e		(353	r 30	0C)									Other:	
TW-22 08242021 8/24/2021 935 5 W X X V Output for the second of the formation of the format	Control D: Control D: Control D: Control D: Control D: Control D: TW4-22_08242021 6/24/2021 936 6 X X X X Control D:	Sampler Name:	Tanner Holliday			Itaine	Matri	103	00 0	(826									Known Hazarda	Y N 6 Received Within
TW-22 08242021 8/24/2021 935 5 W X X V Output for the second of the formation of the format	Control D: Control D: Control D: Control D: Control D: Control D: TW4-22_08242021 6/24/2021 936 6 X X X X Control D:				Time	Ĉ	mple	1/20	1 (45	SCS									&	
0 8/24/2021 943 5 W X X X X X 0 000 Time Wei: 0 8/24/2021 1300 5 W X X X 0 000 Time Wei: 1 8/24/2021 1300 5 W X X 0 000 Time Wei: 1 8/24/2021 905 3 W X 0 0 000 Time Wei: 1	TW4-37_08242021 8/24/2021 943 5 W X <thx< th=""> X<!--</td--><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td>-</td><td>-</td><td></td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td>-</td><td>Sample Comments</td><td></td></thx<>					-	_		-	-		_	-	-	-	-	+	-	Sample Comments	
PW4-60_08242021 S/24/2021 1300 5 W X	W4-60_08242021 8/24/2021 1300 5 W X X X Image: Second		and the second sec			++		-	-			_		-	_	-	-	+		
Price BLANK S/24/2021 905 3 W X Image: Construction of the Package of Work for Reporting Limits and VOC signature 0 Image: Construction by: Signature Image: Construction by: Signature Image: Construction of the Package of Work for Reporting Limits and VOC signature Image: Construction of the Package of Work for Reporting Limits and VOC signature Prior Name: Image: Construction of the Package of Work for Reporting Limits and VOC signature Image: Construction of the Package of Work for Reporting Limits and VOC signature	Price 8/24/2021 905 3 W X Image: Signature Control of the second stress si						-	-	-	-	-	_		-		+	+	+		
Image: Second Structure Image: Second Structure <td>Image: Section of the Package of Max Package of Ma</td> <td></td> <td></td> <td></td> <td></td> <td>+ +</td> <td>_</td> <td>^</td> <td></td> <td><u> </u></td> <td>\vdash</td> <td></td> <td></td> <td></td> <td>+</td> <td>-</td> <td>+</td> <td>+</td> <td></td> <td>Y N NA</td>	Image: Section of the Package of Max Package of Ma					+ +	_	^		<u> </u>	\vdash				+	-	+	+		Y N NA
9	0 V N (A) 1 <td>IRIP BLANK</td> <td></td> <td>0/ 44/ 4041</td> <td>505</td> <td>ľ</td> <td>~</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td>	IRIP BLANK		0/ 44/ 4041	505	ľ	~		-			-		-		-	-	-		
0 4 Unbroken on Sample 2 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 4 1 1 1 1 1 1 1 3 1 <td< td=""><td>1 1<td></td><td></td><td>-</td><td></td><td>+</td><td>-</td><td></td><td>-</td><td>+</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>+</td><td>-</td><td></td><td></td></td></td<>	1 1 <td></td> <td></td> <td>-</td> <td></td> <td>+</td> <td>-</td> <td></td> <td>-</td> <td>+</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>+</td> <td>-</td> <td></td> <td></td>			-		+	-		-	+				-	-	-	+	-		
1 Y N (A) 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 7 8 8 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 10 1 1 1 1	Image: Special Instructions:	20				Н	-	-	-		\vdash				+	+	+	+		
2 2 <td>2 </td> <td>21</td> <td></td> <td></td> <td></td> <td>Н</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td> <td>+</td> <td></td> <td></td>	2	21				Н	-		-	-	-					-	+	+		
Image: Signature Date: Received by: Bignature Date: Received by: Bignature Date: Signature Date: Signature Date: Signature See the Analytical Scope of Work for Reporting Limits and VOC analytical Scope of Work for Reporting	a a b a b <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>\vdash</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td></td>					Н	-		-	-	\vdash		-	-	-	+	+	+		
And Second Structure Date: Bignature Date: Special Instructions: Print Name: Tanner Holliday Time: Time: Time: Print Name: Date: Signature Special Instructions: Print Name: Time: Time: Time: Print Name: Date: Signature Special Instructions: Print Name: Time: Time: Time: Print Name: Time: Print Name: Time: Print Name: Time: Print Name: Time: Print Name: Signature Time: Time: Signature Time: Time: Time:	Relinquished by: Date: Received by: Date: Special Instructions: Print Name: Tanner Holliday Date: Received by: Date: Signature Date: Received by: Date: Special Instructions: Print Name: Tanner Holliday Date: Received by: Special Instructions: Print Name: Tanner Holliday Date: Received by: Special Instructions: Print Name: Time: Print Name: Time: Date: Print Name: Received by: Signature Date: Special Instructions: Print Name: Time: Print Name: Time: Date: Print Name: Print Name: Print Name: Date: Signature Print Name: Print Name: Print Name: Date: Signature Print Name: Print Name: Print Name: Date: Signature Print Name: Received by: Signature Date: Signature Print Name: Received by: Signature Date: Signature		And the second sec			Н	-		-		-			-		+	+	-		
Signature Date: Received by: Print Name: Tamer Holliday Print Name: Time: Print Name: Print Name: Print Name: Print Name: Print Name: Print Name: Print Name: Print Name: Signature Date: Signature Time: Print Name: Print Name: Print Name: Print Name: Signature Time:	Section Date: Received by: Signature Date: Received by: Signature Date: Received by: Signature Time: 100 Print Name: Print Name: Time: Date: Print Name: Time: Print Name: Print Name: Print Name: Time: Print Name: Print Name: Time: Print Name: Print Name: Time: Print Name: Signature Date: Signature Signature Time:					Н	—		-		\vdash			-		+	+	+		- Y (*)
Set Date: Received by: Signature Date: Received by: Signature Ballow Print Name: Time: Print Name: Date: Received by: Signature Signature Date: Print Name: Print Name: Print Name: Date: Received by: Signature Signature Time:	Relinquished by: Signature Date: Signature Received by: Bignature Date: Signature Received by: Signature Date: Signature Date: Signature Date: Signature Date: Signature Date: Signature Date: Signature Date: Signature Date: Signature Time: Print Name: Time: Print Name: Time: Print Name: Time: Time: Print Name: Time: Print Name: Time: Print Name: Time: Time: Time: Print Name: Print Name: Time: Print Name: Time: Time: Time: Print Name:	25				╢	Η		-	\vdash	\vdash	-		_	-	+	+	+		
Relinquished by: Date: Received by: Signature B/25/2021 Signature Print Name: Time: Print Name: Date: Relinquished by: Signature Signature Date: Relinquished by: Signature Signature Date: Print Name: Date: Print Name: Time: Print Name: Date: Print Name: Signature Print Name: Date: Received by: Signature Signature Time: Print Name: Print Name: Signature Time:	Relinquished by: Date: Received by: Signature Date: Received by: Signature Time: 1100 Print Name: Print Name: Tanner Holliday Print Name: Date: Relinquished by: Signature Signature Date: Print Name: Date: Print Name: Date: Print Name: Date: Print Name: Signature Print Name: Time: Print Name: Print Name: Print Name: Signature Print Name: Print Name: Print Name: Print Name: Print Name: Print Name: Print Name: Print Name: Signature Signature	26				+	Η		-	-	-		-	_	-	+	+	-		-
Print Name: Tanner Holliday Inne: Inne: Relinquished by: Date: Received by: Date: Received by: Signature Time: Print Name: Time: ////////////////////////////////////	Print Name: Tanner Holliday Itme: Itme: Relinquished by: Date: Received by: Signature Date: Signature Date: Signature See the Analytical Scope of Work for Reporting Limits and VOC analyte list. Print Name: Time: Print Name: Time: Itme: Itme: See the Analytical Scope of Work for Reporting Limits and VOC analyte list. Print Name: Time: Print Name: Itme: Itme: Itme: Itme: Print Name: Date: Received by: Date: Signature Itme: Print Name: Time: Time: Itme: Itme:		4	Date:	Received by:								4	Date:				1	Special Instructions:	
Relinquished by: Date: Received by: Date: Received by: Signature Date: See the Analytical Scope of Work for Reporting Limits and VOC analyte list. Print Name: Time: Print Name: Z(L/Z/ Time: / (2.55) Relinquished by: Date: Received by: Date: / (2.55) Relinquished by: Signature Signature Date: Signature Time: / (1.25)	Relinquished by: Date: Received by: Date: Received by: Date: Signature Date: See the Analytical Scope of Work for Reporting Limits and VOC analyte list. Print Name: Time: Print Name: Time: 10.2.5 See the Analytical Scope of Work for Reporting Limits and VOC analyte list. Print Name: Date: Received by: Time: 10.2.5 Relinquished by: Signature Signature Date: Received by: Signature Time: Time: 10.2.5 Print Name: Print Name: Date: Received by: Signature Signature Time: Date: Print Name: Print Name: Time: Date: Print Name: Signature Time: Date:	Signature De	mere Holling		Signature	_						_		Tim9:			_	_		
Signature Signa	Signature Date: Received by: Signature Print Name: Print Name: Print Name: Time: Date: Signature Date: Signature Print Name: Signature Signature Date: Received by: Date: Date: Signature		Tanner Holliday		Print Name: Received by:	>	0.		-	11	-	-	_	Date:	1/1	7.1		-	See the Analytical Scope of W	ork for Reporting Limits and VOC
Relinquished by: Date: Signature Signature	Relinquished by: Date: Received by: Date: Signature Signature Time: Print Name: Print Name: Relinquished by: Date: Relinquished by: Date: Signature Print Name: Relinquished by: Date: Signature Date: Signature Date: Signature Time:	Signature		Time:	Signature C	n				12	7-		÷	Time:					analyte list.	
Time: Time:	Time: Time: Print Name: Print Name: Refinquished by: Date: Received by: Signature Signature Time:			Date:	Received by:	-16	24	-	+-+	art	1st -	1		Dale:		02)			
	Refinquished by: Date: Received by: Date: Signature Signature			Time:								,		Time:						
Refinquished by: Date: Received by: Date:	Time: Time:	Refinquished by: Date: Received by:			_	-			-			-	Date:	-	-	-	-			
	Print Name: Print Name:			Time:								Time:								

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	4	5	6	17	8	9	10	11	12	13	14	15	16	
Ammonia	pH <2 H ₂ SO ₄					1		1										
COD	pH <2 H ₂ SO ₄																	
Cyanide	pH>10 NaOH		1															
Metals	pH <2 HNO3	1																
NO ₂ /NO ₃	pH <2 H ₂ SO ₄	Yes	Vzs	1/25	Yes	Yes	Yes	Yes	Vas	Vis	Yas	Ves	Vas	Ves	Vas	Ves	1/05	
0&G	pH <2 HCL	1	1	1	p	1	105	P	1	P	P	1	P	P	P	P	1	
Phenols	pH <2 H ₂ SO ₄																	
Sulfide	pH >9 NaOH, ZnAC				10													
TKN	pH <2 H ₂ SO ₄				1					1				-				
T PO ₄	pH <2 H ₂ SO ₄	1					_											
Cr VI+	pH >9 (NH4)2SO4																	
							-											
			-		1			-	-				-	-				
	- Mail					1		1							1			
																	-	
																		-
			1					1		1	1	-	1			-		

Procedure: 1) Pour a small amount of sample in the sample lid

2) Pour sample from lid gently over wide range pH paper

3) Do Not dip the pH paper in the sample bottle or lid

4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above

If sample is not preserved, properly I
 Flag COC, notify client if requested

6) Place client conversation on COC

7) Samples may be adjusted

Frequency: All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Tab H

Quality Assurance and Data Validation Tables

H-1: Field QA/QC Evaluation

	1x Casing		2x Casing																	Disso	lved	
Location	Volume	Volume Pumped	Volume	Volume Check	Conduc	ctivity	RPD	p	Н	RPD	Temp	erature	RPD	Re	dox	RPD	Tur	bidity	RPD	Oxy	gen	RPD
PIEZ-01				okay	230)9	NC	7.	26	NC	15	5.75	NC	4	99	NC	1	01.0	NC	68	.0	NC
PIEZ-02				okay	926	.0	NC	7.	40	NC	15	6.64	NC	4	94	NC		1.5	NC	22	.3	NC
PIEZ-03A				okay	117	'3	NC	7.	33	NC	15	.92	NC	4	89	NC	and set	10.4	NC	100	0.0	NC
TWN-01	24.16	55.00	48.32	okay	907.0	901.0	0.66	7.18	7.20	0.28	15.71	15.65	0.38	504	502	0.40	2.0	2.0	0.00	44.0	45.0	2.25
TWN-02	NA	Continuously Pumped well	Sector Sector		202	27	NC	7.	00	NC	16	.55	NC	4	95	NC	Lines .	0	NC	93	.0	NC
TWN-03	34.81	44.00	69.62	Pumped Dry	2287	2278	0.39	7.34	7.31	0.41	15.33	15.37	0.26	N	IM	NC	1000	NM	NC	N	M	NC
TWN-04	42.00	110.00	84	okay	1042	1040	0.19	7.11	7.13	0.28	14.93	14.91	0.13	520	520	0.00	0	0	0.00	71.8	71.1	0.98
TWN-07	17.49	19.25	34.98	Pumped Dry	1896	1894	0.11	7.47	7.47	0.00	15.56	15.54	0.13	N	M	NC	Print B	NM	NC	N	M	NC
TWN-18	55.27	132.00	110.54	okay	2775	2775	0.00	6.89	6.88	0.15	14.67	14.67	0.00	491	491	0.00	4.4	4.3	2.30	2.0	2.0	0.00
TWN-20	13.28	13.75	26.56	Pumped Dry	3253	3250	0.09	7.30	7.28	0.27	16.11	16.10	0.06	N	IM	NC		NM	NC	N	M	NC
TWN-21	19.30	22.00	38.6	Pumped Dry	3692	3700	0.22	7.38	7.35	0.41	16.19	16.15	0.25	N	M	NC	lisa B	NM	NC	N	M	NC
TW4-22	NA	Continuously Pumped well		-	537	'9	NC	6.	94	NC	16	6.64	NC	4	51	NC	1	2.0	NC	87	.0	NC
TW4-24	NA	Continuously Pumped well			785	8	NC	6.	74	NC	16	.87	NC	4	96	NC	17.00	1.7	NC	20	.0	NC
TW4-25	NA	Continuously Pumped well	1.2110, 50.041	A-IST LATER IN	253	15	NC	7.	01	NC	15	.96	NC	5	11	NC	1.15	0	NC	39	.8	NC
W4-22, TW	4-24, TW4-25,	TWN-02 are continually pumped	wells.	THE REAL PROPERTY.		1.1.1	1000		Sec. 1	and should		121			Carlo Das	and the second second		A CONTRACTOR OF				31.22

TWN-03, TWN-07, TWN-20, TWN-21 were pumped dry and sampled after recovery.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

RPD = Relative Percent Difference

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU are included for information purposes only.

H-2: Holding Time Evaluation

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
PIEZ-01	Chloride	8/19/2021	9/7/2021	19	28	OK
PIEZ-01	Nitrate + Nitrite as N	8/19/2021	8/27/2021	8	28	OK
PIEZ-02	Chloride	8/19/2021	9/7/2021	19	28	OK
PIEZ-02	Nitrate + Nitrite as N	8/19/2021	8/27/2021	8	28	OK
PIEZ-03A	Chloride	8/19/2021	9/7/2021	19	28	OK
PIEZ-03A	Nitrate + Nitrite as N	8/19/2021	8/27/2021	8	28	OK
TWN-01	Chloride	8/18/2021	9/6/2021	19	28	OK
TWN-01	Nitrate + Nitrite as N	8/18/2021	8/24/2021	6	28	OK
TWN-02	Chloride	8/18/2021	9/6/2021	19	28	OK
TWN-02	Nitrate + Nitrite as N	8/18/2021	8/24/2021	6	28	OK
TWN-03	Chloride	8/19/2021	9/7/2021	19	28	OK
TWN-03	Nitrate + Nitrite as N	8/19/2021	8/27/2021	8	28	OK
TWN-04	Chloride	8/18/2021	9/6/2021	19	28	OK
TWN-04	Nitrate + Nitrite as N	8/18/2021	8/24/2021	6	28	OK
TWN-07	Chloride	8/19/2021	9/7/2021	19	28	OK
TWN-07	Nitrate + Nitrite as N	8/19/2021	8/27/2021	8	28	OK
TWN-18	Chloride	8/17/2021	9/6/2021	20	28	OK
TWN-18	Nitrate + Nitrite as N	8/17/2021	8/24/2021	7	28	OK
TWN-18R	Chloride	8/17/2021	9/6/2021	20	28	OK
TWN-18R	Nitrate + Nitrite as N	8/17/2021	8/24/2021	7	28	OK
TWN-20	Chloride	8/19/2021	9/6/2021	18	28	ОК
TWN-20	Nitrate + Nitrite as N	8/19/2021	8/27/2021	8	28	OK
TWN-21	Chloride	8/19/2021	9/6/2021	18	28	OK
TWN-21	Nitrate + Nitrite as N	8/19/2021	8/24/2021	5	28	OK
TWN-60	Chloride	8/18/2021	9/6/2021	19	28	OK
TWN-60	Nitrate + Nitrite as N	8/18/2021	8/24/2021	6	28	OK
TWN-65	Chloride	8/17/2021	9/6/2021	20	28	OK
TWN-65	Nitrate + Nitrite as N	8/17/2021	8/24/2021	7	28	OK
TW4-22	Chloride	8/24/2021	9/9/2021	16	28	OK
TW4-22	Nitrate + Nitrite as N	8/24/2021	8/27/2021	3	28	OK
TW4-24	Chloride	8/24/2021	9/7/2021	14	28	OK
TW4-24	Nitrate + Nitrite as N	8/24/2021	8/27/2021	3	28	OK
TW4-25	Chloride	8/24/2021	9/7/2021	14	28	OK
TW4-25	Nitrate + Nitrite as N	8/24/2021	8/27/2021	3	28	OK
TW4-60	Chloride	8/24/2021	9/9/2021	16	28	OK
TW4-60	Nitrate + Nitrite as N	8/24/2021	8/27/2021	3	28	OK

H-3: Analytical Method Check

Parameter	Method	Method Used by Lab
Nitrate	E353.1 or E353.2	E353.2
	A4500-Cl B or A4500-Cl E	
Chloride	or E300.0	E300.0

Both Nitrate and Chloride were analyzed with the correct analytical method.

H-4	Reporting	Limit	Check	

		H-4 Reporting	Limit Ch	leck			
Location	Analyte	Lab Reporting Limit	Units	Qualifier	Dilution Factor	Required Reporting Limit	RL Check
PIEZ-01	Chloride	1	mg/L	-	10	1	OK
PIEZ-01	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
PIEZ-02	Chloride	1	mg/L		5	1	OK
PIEZ-02	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
PIEZ-03A	Chloride	2	mg/L		20	1	OK
PIEZ-03A	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TW4-22	Chloride	10	mg/L		100	1	OK
TWN-01	Chloride	1	mg/L		10	1	OK
TWN-01	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-02	Chloride	11	mg/L		10	1	OK
TWN-02	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-03	Chloride	2	mg/L		20	1	OK
TWN-03	Nitrate + Nitrite as N	0.2	mg/L		20	0.1	OK
TWN-04	Chloride	1	mg/L		10	1	OK
TWN-04	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-07	Chloride	2	mg/L		20	1	OK
TWN-07	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-18	Chloride	1	mg/L		10	1	OK
TWN-18	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-18R	Chloride	1	mg/L	U	1	1	OK
TWN-18R	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK
TWN-20	Chloride	2	mg/L		20	1	OK
TWN-20	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-21	Chloride	2	mg/L		20	1	OK
TWN-21	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-60	Chloride	1	mg/L	U	1	1	OK
TWN-60	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK
TWN-65	Chloride	1	mg/L		10	1	OK
TWN-65	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TW4-22	Nitrate + Nitrite as N	0.5	mg/L		50	0.1	OK
TW4-24	Chloride	10	mg/L		100	1	OK
TW4-24	Nitrate + Nitrite as N	0.5	mg/L		50	0.1	OK
TW4-25	Chloride	5	mg/L		50	1	OK
TW4-25	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TW4-60	Chloride	1	mg/L	U	1	1	OK
TW4-60	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK

H-5 QA/QC Evaluation for Sample Duplicates

Constituent	TWN-18	TWN-65	%RPD
Chloride	42.9	44.1	2.76
Nitrogen	0.199	0.208	4.42

H-6 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

Matrix Spike % Recovery Comparison

1						REC	\$
Lab Report	Lab Sample ID	Well	Analyte	MS %REC	MSD %REC	Range	RPD
2108726	2108726-001	TW4-25	Nitrate	112	111	90-110	0.261
2108726	2108726-005	TW4-01	Nitrate	113	111	90-110	1.39
2108726	2108726-015	TW4-37	Nitrate*	NC	NC	90-110	NC

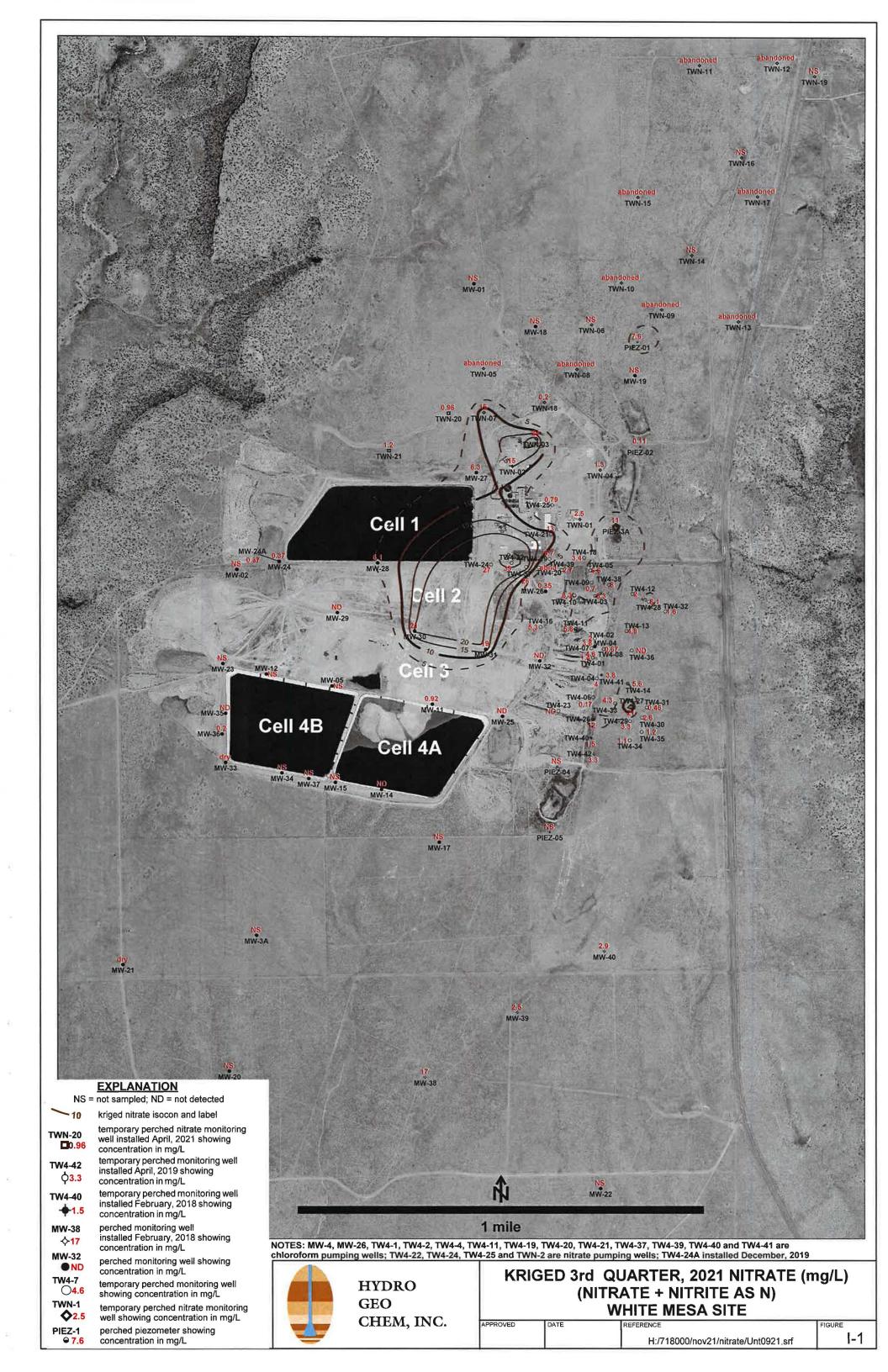
* - Recovery was not calculated because the analyte of the sample was greater than 4 times the spike amount

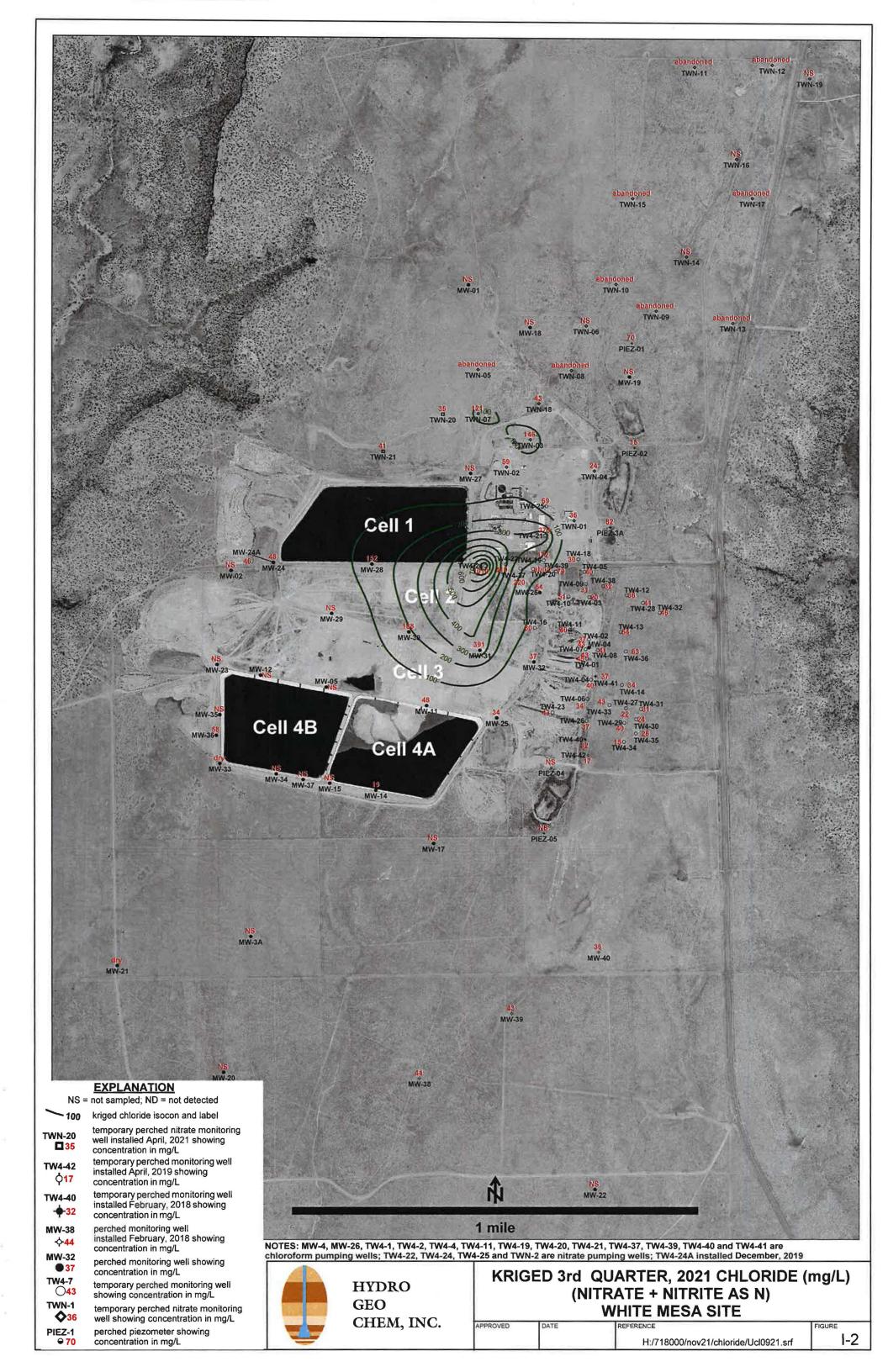
NC - Not calculated

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

H-7 Receipt Temperature Evaluation


Sample Batch	Wells in Batch	Temperature
2108638	PIEZ-01, PIEZ-02, PIEZ-03A, TWN-1, TWN-2, TWN-3, TWN-4, TWN-7, TWN-18, TWN-18R, TWN-20, TWN-21, TWN-60, TWN-65	1.0 °C
2108726	TW4-22, TW4-24, TW4-25, TW4-60	0.0 °C


H-8 Rinsate Evaluation

All rinsate and DI blank samples were non-detect for the quarter.

Tab I

Kriged Current Quarter Isoconcentration Maps

Tab J

Analyte Concentrations over Time

Piezometer 1

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	6.8	NA
7/14/2009	6.8	60
9/22/2009	7.3	78
10/27/2009	7.4	61
6/2/2010	7.2	52
7/19/2010	6.8	52
12/10/2010	6.5	60
1/31/2011	7	60
4/25/2011	6.8	58
7/25/2011	7	53
10/19/2011	6.6	55
1/11/2012	7.1	78
4/20/2012	6.6	58
7/27/2012	7.2	56
10/17/2012	7.66	55
2/18/2013	8.11	56.7
4/24/2013	8.88	53.3
8/28/2013	7.83	55.1
10/16/2013	6.68	54.1
1/13/2014	6.79	56.2
5/7/2014	7.57	52.1
8/6/2014	5.1	55
10/8/2014	5.75	57.6
2/18/2015	6.41	55.9
5/12/2015	5.95	57.5
8/26/2015	4.96	64.2
10/14/2015	6.17	54.4
2/23/2016	8.31	56.5
5/17/2016	6.33	59.1
7/19/2016	6.78	53.9
10/11/2016	6.42	58.1
2/15/2017	6.75	54.5
6/1/2017	6.60	54.7
7/20/2017	6.80	58.0
10/4/2017	6.21	54.4
1/17/2018	6.35	55.3
5/9/2018	6.56	58.0
8/8/2018	6.66	63.5
11/20/2018	6.70	55.5
2/19/2019	6.72	56.8
5/30/2019	6.75	59.4
8/14/2019	6.81	61.1
10/16/2019	7.21	59.3
1/30/2020	7.12	68.9

Piezometer 1

Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	6.95	67.7
7/15/2020	7.36	63.6
11/13/2020	7.51	63.9
2/18/2021	7.34	57.5
5/27/2021	7.89	69.9
8/19/2021	7.60	70.0

Piezometer 2

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	0.500	NA
7/14/2009	0.500	7.0
9/22/2009	0.500	17.0
10/27/2009	0.600	7.0
6/2/2010	0.600	8.0
7/19/2010	0.600	8.0
12/10/2010	0.200	6.0
1/31/2011	0.300	9.0
4/25/2011	0.300	8.0
7/25/2011	0.100	9.0
10/19/2011	0.100	8.0
1/11/2012	0.100	9.0
4/20/2012	0.200	8.0
7/27/2012	0.200	9.0
10/17/2012	0.192	9.5
2/19/2013	0.218	9.7
4/24/2013	0.172	10.3
8/28/2013	0.198	9.7
10/16/2013	0.364	9.2
1/13/2014	0.169	11.4
5/7/2014	0.736	11.4
8/6/2014	0.800	12.0
10/8/2014	0.755	12.2
2/18/2015	0.749	12.6
5/12/2015	0.646	13.1
8/26/2015	0.662	15.5
10/14/2015	0.692	13.3
2/23/2016	0.615	13.4
5/17/2016	0.665	14.0
7/19/2016	0.669	12.4
10/11/2016	0.732	13.4
2/15/2017	0.696	12.4
6/1/2017	0.345	13.2
7/20/2017	0.555	13.4
10/4/2017	0.684	12.7
1/17/2018	0.716	13.0
5/9/2018	0.776	14.0
8/8/2018	0.818	15.1
11/20/2018	0.648	12.3
2/19/2019	0.599	12.9
5/30/2019	0.702	12.6
8/14/2019	0.606	13.2
10/16/2019	0.573	12.6
1/30/2020	0.740	14.2

Piezometer 2

Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	0.679	14.4
7/15/2020	0.793	12.7
11/13/2020	0.544	12.9
2/18/2021	0.401	15.7
5/27/2021	0.100	13.9
8/19/2021	0.110	14.6

Piezometer 3	BA	
Date	Nitrate (mg/l)	Chloride (mg/l)
5/17/2016	8.23	109
7/19/2016	8.83	93.8
10/11/2016	8.44	100
2/15/2017	10.00	111
6/1/2017	10.10	124
7/20/2017	9.31	105
10/4/2017	9.65	107
1/17/2018	8.61	94.3
5/9/2018	8.98	100
8/8/2018	12.1	122
11/20/2018	11.8	105
2/19/2019	11.8	102
5/30/2019	11.8	104
8/14/2019	10.7	96.2
10/16/2019	8.97	83.0
1/30/2020	10.5	99.5
5/20/2020	12.4	88.3
7/15/2020	12.8	82.7
11/13/2020	13.0	72.8
2/18/2021	11.1	85.9
5/27/2021	14.4	85.2
8/19/2021	11.2	81.5

Nitrate (mg/l)	Chloride (mg/l)
0.7	19
0.4	17
0.4	19
0.5	18
0.5	17
0.6	20
0.6	19
	14
	17
	19
	14
	10
	15
	17
	17
	17.5
	17.6
	17.4
	24.1
	26.8
	29.2
	31.1
	28
	27.6
	27.8
	29.2
	33.2
	27.7
	30.3
	32.1
	29.6
	33.0
	31.2
	32.7
	31.2
	32.0
	30.4
	28.4
	34.2
	28.9
	31.4
	32.6
	30.3
	32.0
2.24	33.8
	0.7 0.4 0.5 0.5 0.6

TWN-1 Date Nitrate (mg/l) Chloride (mg/l) 5/20/2020 2.24 33.0 7/15/2020 30.8 2.36 29.2 11/12/2020 1.89 2/17/2021 34.1 2.53 5/25/2021 34.7 3.18 8/18/2021 2.47 35.7

TWN-2		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	25.4	29
7/21/2009	25	25
9/21/2009	22.6	17
11/2/2009	20.8	55
3/24/2010	62.1	85
6/2/2010	69	97
9/29/2010	69	104
12/9/2010	48	93
2/1/2011	43	93
4/28/2011	40	85
7/28/2011	33	74
10/20/2011	33	76
1/12/2012	31	86
4/20/2012	48	103
7/31/2012	54	93
10/17/2012	22.1	79
2/19/2013	57.3	80.5
4/24/2013	57.7	82.1
8/27/2013	80	75.9
10/16/2013	111	70.4
1/13/2014	42.6	72.4
5/7/2014	44.7	84.9
8/6/2014	42	80
10/8/2014	70.6	81
2/18/2015	48.6	84.8
5/12/2015	52.8	82.6
8/25/2015	49.7	87.8
10/14/2015	44.9	74.9
2/23/2016	86.3	73.9
5/17/2016	45.4	74.5
7/19/2016	35.3	68.8
10/11/2016	32.6	69.8
2/15/2017	27.4	65.8
6/1/2017	25.0	61.5
7/20/2017	23.9	64.2
10/4/2017	31.9	60.5
1/19/2018	19.6	57.1
5/9/2018	19.8	62.3
8/8/2018	18.6	61.5
11/20/2018	19.6	56.0
2/19/2019	19.0	50.7
5/29/2019	45.1	102
8/14/2019	23.2	50.7
10/16/2019	18.2	53.0
1/29/2020	16.5	66.1

TWN-2		
Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	16.1	59.6
7/15/2020	17.2	55.6
11/12/2020	12.00	53.5
2/18/2021	15.4	61.8
5/25/2021	13.8	61.5
8/18/2021	15.3	58.9

×

TWN-3		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	23.6	96
7/21/2009	25.3	96
9/21/2009	27.1	99
11/2/2009	29	106
3/25/2010	25.3	111
6/3/2010	26	118
7/15/2010	27	106
12/10/2010	24	117
2/1/2011	24	138
4/28/2011	26	128
7/29/2011	25	134
10/20/2011	25	129
1/12/2012	25	143
4/20/2012	24	152
7/31/2012	27	158
10/17/2012	12.1	149
2/19/2013	22.2	157
4/24/2013	27.2	158
8/28/2013	20.9	171
10/17/2013	23.5	163
1/15/2014	19.6	160
5/7/2014	23.6	168
8/6/2014	19.5	174
10/9/2014	19.1	153
2/19/2015	19.4	164
5/14/2015	17.2	141
8/26/2015	16.2	156
10/14/2015	16.3	129
2/24/2016	16.8	128
5/18/2016	13.5	116
7/19/2016	16.8	110
10/7/2016	15.8	113
2/16/2017	17.4	113
6/2/2017	15.9	108
7/20/2017	15.9	106
10/5/2017	15.6	111
1/19/2018	14.4	107
5/9/2018	16.4	115
8/9/2018	19.4	149
11/21/2018	20.1	123
2/21/2019	20.7	140
5/30/2019	18.7	137
8/15/2019	19.8	133
10/17/2019	19.6	126
1/30/2020	19.4	156

TWN-3 Nitrate (mg/l) Chloride (mg/l) Date 5/21/2020 24.0 7/16/2020 22.2

11/13/2020	18.00	137
2/18/2021	23.8	145
5/27/2021	25.0	156
8/19/2021	24.3	146

136

130

1.5

TWN-4		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	1.00	13.0
7/21/2009	0.05	12.0
9/21/2009	0.40	13.0
10/28/2009	0.40	11.0
3/16/2010	0.90	22.0
5/27/2010	1.00	22.0
9/27/2010	0.90	19.0
12/8/2010	1.00	21.0
1/25/2011	0.90	21.0
4/20/2011	0.90	21.0
7/26/2011	1.10	35.0
10/18/2011	0.90	20.0
1/9/2012	0.90	20.0
4/18/2012	1.10	24.0
7/25/2012	1.40	25.0
10/15/2012	1.45	26.4
2/18/2013	1.51	25.3
4/23/2013	1.63	24.4
8/27/2013	1.58 1.69	27.2
10/16/2013 1/14/2014	1.69	29.4 28.4
5/6/2014	1.41	28.4
3/0/2014 8/5/2014	2.00	29.0
10/8/2014	1.44	30.7
2/18/2014	1.44	31.5
5/13/2015	0.73	31.9
8/25/2015	0.97	35.2
10/13/2015	1.58	28.4
2/23/2016	2.02	30.7
5/17/2016	2.97	31.7
7/20/2016	3.14	28.0
10/6/2016	3.09	31.3
2/15/2017	2.63	31.2
6/1/2017	2.37	28.6
7/19/2017	2.35	28.0
10/4/2017	2.27	27.4
1/18/2018	1.77	26.3
5/8/2018	1.86	27.7
8/8/2018	1.54	28.0
11/20/2018	1.48	22.7
2/20/2019	1.53	25.3
5/29/2019	1.51	26.5
8/14/2019	1.81	23.7
10/16/2019	2.15	25.4
1/29/2020	1.89	27.2

TWN-4

Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	1.75	25.1
7/15/2020	1.75	23.1
11/12/2020	1.18	22.8
2/17/2021	1.64	24.2
5/25/2021	1.70	23.2
8/18/2021	1.28	23.7

TWN-7		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/25/2009	ND	11.00
9/21/2009	ND	7.00
11/10/2009	0.10	7.00
3/17/2010	0.800	6.00
5/28/2010	1.200	6.00
7/14/2010	1.600	7.00
12/10/2010	1.000	4.00
1/27/2011	1.300	6.00
4/21/2011	1.700	6.00
7/29/2011	0.700	5.00
10/19/2011	2.200	6.00
1/11/2012	2.300	5.00
4/20/2012	1.200	6.00
7/26/2012	0.900	6.00
10/16/2012	0.641	5.67
2/19/2013	0.591	5.68
4/24/2013	1.160	5.88
8/28/2013	0.835	6.96
10/16/2013	0.986	5.70
1/15/2014	0.882	5.75
5/7/2014	0.564	5.26
8/6/2014	0.900	6.00
10/9/2014	0.968	5.93
2/19/2015	1.040	5.58
5/14/2015	0.779	6.18
8/26/2015	0.348	6.12
10/14/2015	0.672	5.84
2/24/2016	0.240	6.06
5/18/2016	0.732	6.26
7/21/2016	0.810	5.97
10/7/2016	0.698	6.17
2/16/2017	1.63	14.00
6/2/2017	3.74	29.70
7/20/2017	2.70	29.00
10/5/2017	3.58	41.40
1/19/2018	5.82	69.40
5/9/2018	10.2	94.70
8/9/2018	10.6	105
11/21/2018	11.5	104
2/21/2019	12.9	107
5/30/2019	13.5	122
8/15/2019	12.9	120
10/17/2019	14.2	119
1/30/2020	14.2	128
5/21/2020	14.6	126

TWN-7 Chloride (mg/l) Nitrate (mg/l) Date 7/16/2020 15.2 116 11/13/2020 11.8 121 2/18/2021 16.0 129 5/27/2021 16.4 129 8/19/2021 15.1 121

TWN-18		
Date	Nitrate (mg/l)	Chloride (mg/l)
11/2/2009	1.300	57.0
3/17/2010	1.600	42.0
6/1/2010	1.800	63.0
9/27/2010	1.800	64.0
12/9/2010	1.600	59.0
1/27/2011	1.400	61.0
4/26/2011	1.800	67.0
7/28/2011	1.800	65.0
10/18/2011	1.900	60.0
1/10/2012	1.900	64.0
4/19/2012	2.100	64.0
7/26/2012	2.300	67.0
10/16/2012	1.950	67.5
2/18/2013	2.270	68.7
4/23/2013 8/27/2013	2.320 2.040	64.3
10/16/2013	2.040	70.4 67.3
1/14/2014	2.130	68.4
5/6/2014	2.330	76.5
8/5/2014 8/5/2014	1.800	70.0
10/8/2014	1.470	74.8
2/18/2015	1.000	73.3
5/13/2015	1.350	76.6
8/25/2015	0.350	81.3
10/13/2015	0.668	69.0
2/23/2016	0.648	67.6
5/17/2016	0.497	69.9
7/20/2016	0.100	52.7
10/6/2016	0.501	67.4
2/15/2017	0.470	62.1
6/1/2017	0.392	63.9
7/19/2017	0.419	59.0
10/4/2017	0.256	56.6
1/18/2018	0.332	53.1
5/8/2018	0.283	57.8
8/8/2018	0.348	59.7
11/20/2018	0.160	48.1
2/20/2019	0.155	46.4
5/29/2019	0.129	50.0
8/14/2019	0.181	46.9
10/16/2019	0.162	47.1
1/29/2020	0.224	51.9
5/20/2020	0.236	47.4
7/15/2020	0.232	44.0
11/12/2020	0.208	42.3

Nitrate (mg/l)	Chloride (mg/l)
0.228	46.2
0.220	44.9
0.199	42.9
	0.228 0.220

TWN-20		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/3/2021	1.88	50.0
8/19/2021	0.96	35.3

TWN-21		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/3/2021	1.03	41.9
8/19/2021	1.16	40.5

TW4-19

1004-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
7/22/2002	42.80	12/7/2005	81
9/12/2002	47.60	3/9/2006	86
3/28/2003	61.40	7/20/2006	123
6/23/2003	11.40	11/9/2006	134
7/15/2003	6.80	2/28/2007	133
8/15/2003	4.00	8/15/2007	129
9/12/2003	5.70	10/10/2007	132
9/25/2003	9.20	3/26/2008	131
10/29/2003	7.70	6/25/2008	128
11/9/2003	4.80	9/10/2008	113
8/16/2004	9.91	10/15/2008	124
9/17/2004	4.50	3/4/2009	127
3/16/2005	5.30	6/23/2009	132
6/7/2005	5.70	9/14/2009	43
8/31/2005	4.60	12/14/2009	124
12/1/2005	0.10	2/17/2010	144
3/9/2006	4.00	6/9/2010	132
6/14/2006	5.20	8/16/2010	142
7/20/2006	4.30	10/11/2010	146
11/9/2006	4.60	2/17/2011	135
2/28/2007	4.00	6/7/2011	148
8/15/2007	4.10	8/17/2011	148
10/10/2007	4.00	11/17/2011	148
3/26/2008	2.20	1/23/2012	138
6/25/2008	2.81	6/6/2012	149
9/10/2008	36.20	9/5/2012	149
10/15/2008	47.80	10/3/2012	150
3/4/2009	3.20	2/11/2013	164
6/23/2009	2.40	6/5/2013	148
9/14/2009	0.10	9/3/2013	179
12/14/2009	26.70	10/29/2013	206
2/17/2010	2.00	1/27/2014	134
6/9/2010	4.40	5/19/2014	152
8/16/2010	5.90	8/11/2014	140
10/11/2010	2.70	10/21/2014	130
2/17/2011	17.00	3/9/2015	238
6/7/2011	12.00	6/8/2015	180
8/17/2011	3.00	8/31/2015	326
11/17/2011	5.00	10/19/2015	252
1/23/2012	0.60	3/9/2016	276
6/6/2012	2.40	5/23/2016	201
9/5/2012	2.50	7/25/2016	214
10/3/2012	4.10	10/13/2016	200
2/11/2013	7.99	3/8/2017	461
6/5/2013	2.95	6/13/2017	135

TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/3/2013	17.60	7/26/2017	218
10/29/2013	4.70	10/11/2017	139
1/27/2014	1.62	3/12/2018	193
5/19/2014	1.34	6/8/2018	138
8/11/2014	1.60	8/22/2018	166
10/21/2014	4.72	11/28/2018	140
3/9/2015	8.56	3/8/2019	197
6/8/2015	0.92	6/5/2019	160
8/31/2015	11.60	9/4/2019	153
10/19/2015	10.60	12/10/2019	147
3/9/2016	15.70	2/19/2020	205
5/23/2016	1.27	5/27/2020	147
7/25/2016	10.50	9/4/2020	188
10/13/2016	10.00	10/28/2020	104
3/8/2017	11.10	2/23/2021	167
6/13/2017	0.243	6/9/2021	115
7/26/2017	1.12	8/24/2021	172
10/11/2017	0.377		
3/12/2018	8.61		
6/8/2018	0.494		
8/22/2018	2.55		
11/28/2018	0.233		
3/8/2019	6.58		
6/5/2019	8.96		
9/4/2019	0.332		
12/10/2019	0.535		
2/19/2020	10.10		
5/27/2020	1.14		
9/4/2020	11.60		
10/28/2020	1.10		
2/23/2021	6.61		
6/9/2021	4.04		
8/24/2021	6.68		

The sampling program for TW4-19 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

FW4-21		D. 1	
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
5/25/2005	14.6	12/7/2005	353
8/31/2005	10.1	3/9/2006	347
11/30/2005	9.6	7/20/2006	357
3/9/2006	8.5	11/8/2006	296
6/14/2006	10.2	2/28/2007	306
7/20/2006	8.9	6/27/2007	327
11/8/2006	8.7	8/15/2007	300
2/28/2007	8.7	10/10/2007	288
6/27/2007	8.6	3/26/2008	331
8/15/2007	8.6	6/25/2008	271
10/10/2007	8.3	9/10/2008	244
3/26/2008	14.3	10/15/2008	284
6/25/2008	8.8	3/11/2009	279
9/10/2008	7.6	6/24/2009	291
10/15/2008	8.0	9/15/2009	281
3/11/2009	8.3	12/22/2009	256
6/24/2009	8.1	2/25/2010	228
9/15/2009	9.2	6/10/2010	266
12/22/2009	8.4	8/12/2010	278
2/25/2010	8.4	10/13/2010	210
6/10/2010	12.0	2/22/2011	303
8/12/2010	14.0	6/1/2011	297
10/13/2010	7.0	8/17/2011	287
2/22/2011	9.0	11/16/2011	276
6/1/2011	13.0	1/19/2012	228
8/17/2011	14.0	6/13/2012	285
11/16/2011	13.0	9/13/2012	142
1/19/2012	15.0	10/4/2012	270
6/13/2012	11.0	2/13/2013	221
9/13/2012	13.0	6/18/2013	243
10/4/2012	14.0	9/12/2013	207
2/13/2013	11.8	11/13/2013	206
6/18/2013	13.8	2/5/2014	200
9/12/2013	10.3	5/22/2014	243
11/13/2013	9.0	8/27/2014	230
2/5/2014	11.4	10/29/2014	252
5/22/2014	11.5	3/12/2015	255
8/27/2014	7.1	6/8/2015	494
10/29/2014	10.0	8/31/2015	499

TW4-21

Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/12/2015	10.9	10/19/2015	413
6/8/2015	13.1	3/9/2016	452
8/31/2015	14.7	5/23/2016	425
10/19/2015	14.3	7/25/2016	457
3/9/2016	14.6	10/12/2016	439
5/23/2016	13.1	3/8/2017	478
7/25/2016	16.5	6/13/2017	309
10/12/2016	13.5	7/26/2017	447
3/8/2017	17.7	10/11/2017	378
6/13/2017	9.5	3/12/2018	447
7/26/2017	18.2	6/8/2018	387
10/11/2017	16.9	8/22/2018	182
3/12/2018	15.8	10/22/2018	392
6/8/2018	14.1	3/8/2019	180
8/22/2018	0.236	6/5/2019	456
10/22/2018	15.2	9/4/2019	478
3/8/2019	8.99	12/10/2019	339
6/5/2019	17.5	2/19/2020	446
9/4/2019	14.7	5/27/2020	353
12/10/2019	5.73	9/4/2020	382
2/19/2020	8.93	10/28/2020	411
5/27/2020	15.4	2/23/2021	454
9/4/2020	12.6	6/9/2021	461
10/28/2020	16.3	8/24/2021	375
2/23/2021	15.2		
6/9/2021	21.5		

TW4-22		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/28/2007	20.9	347
6/27/2007	19.3	273
8/15/2007	19.3	259
10/10/2007	18.8	238
3/26/2008	39.1	519
6/25/2008	41.9	271
9/10/2008	38.7	524
10/15/2008	36.3	539
3/11/2009	20.7	177
6/24/2009	20.6	177
9/15/2009	40.3	391
12/29/2009	17.8	175
3/3/2010	36.6	427
6/15/2010	19	134
8/12/2010	18	127
8/24/2010	15	130
10/13/2010	16	134
2/23/2011	18	114
6/1/2011	17	138
8/17/2011	15	120
11/16/2011	19	174
1/19/2012	14	36
6/13/2012	12.8	35
9/12/2012	7	121
10/4/2012	14	130
2/11/2013	58	635
6/5/2013	50.2	586
9/3/2013	29.7	487
10/29/2013	45.2	501
1/27/2014	54.6	598
5/19/2014	47.2	614
8/11/2014	41.5	540
10/21/2014	54.9	596
3/9/2015	69.2	675
6/8/2015	47.1	390
8/31/2015	64.7	557
10/19/2015	56.1	567
3/9/2016	31.1	583
5/23/2016	58.4	598
7/25/2016	61.3	619
10/12/2016	61.5	588
3/8/2017	69.8	566
6/13/2017	70.8	572
7/26/2017	66.1	391
10/11/2017	80.1	600
3/12/2018	62.3	607
6/8/2018	72.5	580

TW4-22		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/22/2018	55.4	613
11/28/2018	75.7	567
3/8/2019	71.9	528
6/5/2019	83.9	662
9/4/2019	72.5	588
12/10/2019	59.9	608
2/19/2020	57.7	606
5/27/2020	60.5	578
9/4/2020	64.8	514
10/28/2020	64.9	523
2/23/2021	69.6	618
6/9/2021	89.3	408
8/24/2021	35.1	410

TW4-24		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/27/2007	26.1	770
8/15/2007	29	791
10/10/2007	24.7	692
3/26/2008	24.4	740
6/25/2008	45.3	834
9/10/2008	38.4	1180
10/15/2008	44.6	1130
3/4/2009	30.5	1010
6/24/2009	30.4	759
9/15/2009	30.7	618
12/17/2009	28.3	1080
2/25/2010	33.1	896
6/9/2010	30	639
8/11/2010	32	556
8/24/2010	31	587
10/6/2010	31	522
	31	1100
2/17/2011		
5/26/2011	35	1110
8/17/2011	34	967
11/16/2011	35	608
1/18/2012	37	373
6/6/2012	37	355
8/30/2012	37	489
10/3/2012	38	405
2/11/2013	35.9	1260
6/5/2013	23.7	916
9/3/2013	32.6	998
10/29/2013	34.6	1030
1/27/2014	31.6	809
5/19/2014	35	1020
8/11/2014	31.5	1150
10/21/2014	35.7	1050
3/9/2015	34.6	944
6/8/2015	31.8	1290
8/31/2015	25.3	788
10/19/2015	29.6	909
3/9/2016	29.1	989
5/23/2016	24.2	771
7/25/2016	34.4	1,180
10/12/2016	31.9	1,010
3/8/2017	41.3	1,090
6/13/2017	39.9	1,080
7/26/2017	40.0	1,230
10/11/2017	31.7	895
3/12/2018	44.9	1,320
6/14/2018	33.6	792
8/22/2018	33.8	996
11/28/2018	38.4	1,100
3/8/2019	39.3	1,040
6/5/2019	33.2	1,020
9/4/2019	36.4	1,130
12/10/2019	33.8	1,090

TW4-24		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2020	37.1	1,010
5/27/2020	41.7	1,060
9/4/2020	39.1	1,100
10/28/2020	35.9	1,050
2/23/2021	41.9	1,170
6/9/2021	48.0	938
8/24/2021	26.7	1,010

à.

TW4-25		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/27/2007	17.1	395
8/15/2007	16.7	382
10/10/2007	17	356
3/26/2008	18.7	374
6/25/2008	22.1	344
9/10/2008	18.8	333
10/15/2008	21.3	366
3/4/2009	15.3	332
6/24/2009	15.3	328
9/15/2009	3.3	328
12/16/2009	14.2	371
2/23/2010	14.4	296
6/8/2010	16	306
8/10/2010	14	250
10/5/2010	15	312
2/16/2011	15	315
5/25/2011	16	321
8/16/2011	16	276
11/15/2011	16	294
1/18/2012	16	304
5/31/2012	16	287
9/11/2012	17	334
10/3/2012	17	338
2/11/2013	9.04	190
6/5/2013	5.24	136
9/3/2013	5.69	119
10/29/2013	6.10	88.6
1/27/2014	2.16	85.7
5/19/2014	1.21	51.1
8/11/2014	1.6	67
10/21/2014	1.03	58.1
3/9/2015	14.4	310
6/8/2015	1.14	58.3
8/31/2015	1.63	69.2
10/21/2015	1.78	93.7
3/9/2016	0.837	62.7
5/23/2016	0.959	75.5
7/25/2016	1.78	74.1
10/12/2016	1.24	59.8
3/8/2017	17.0	285
6/13/2017	0.976	69.8
7/26/2017	1.23	70.1
10/11/2017	1.29	68.0
3/12/2018	2.23	70.5
6/14/2018	1.14	60.3

TW4-25		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/22/2018	0.810	69.1
11/28/2018	0.634	59.7
3/8/2019	0.639	65.0
6/5/2019	0.821	59.0
9/4/2019	0.548	58.1
12/10/2019	0.841	73.1
2/19/2020	0.607	86.0
5/27/2020	0.851	76.8
9/4/2020	0.994	67.3
10/28/2020	1.64	61.3
2/23/2021	3.43	100
6/9/2021	1.57	55.1
8/24/2021	0.793	69.3

10100-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	12.4	6/22/2005	125
9/22/2005	12.8	9/22/2005	125
12/14/2005	13.6	12/14/2005	128
3/22/2006	13.8	3/22/2006	125
6/21/2006	14.5	6/21/2006	124
9/13/2006	14.1	9/13/2006	118
10/25/2006	14.6	10/25/2006	124
3/15/2007	14.4	3/15/2007	125
8/22/2007	14.6	8/22/2007	126
10/24/2007	14.9	10/24/2007	122
3/19/2008	14.8	3/19/2008	118
6/3/2008	18.7	6/3/2008	125
8/4/2008	17.3	8/4/2008	121
11/5/2008	15.6	11/5/2008	162
2/3/2009	15.3	2/3/2009	113
5/13/2009	15.1	5/13/2009	122
8/24/2009	20.9	8/24/2009	118
10/14/2009	15.0	10/14/2009	129
1/20/2010	15.4	1/20/2010	106
2/9/2010	16.1	2/9/2010	127
4/27/2010	15.8	4/27/2010	97
5/24/2010	17.0	9/14/2010	111
6/15/2010	15.3	11/9/2010	126
8/24/2010	16.0	2/1/2011	134
9/14/2010	15.0	4/11/2011	134
10/19/2010	15.0	5/10/2011	128
11/9/2010	15.0	6/20/2011	127
12/14/2010	16.0	7/5/2011	127
1/10/2011	15.0	8/3/2011	126
2/1/2011	16.0	9/7/2011	145
3/14/2011	17.0	10/4/2011	129
4/11/2011	16.0	11/8/2011	122
5/10/2011	16.0	12/12/2011	124
6/20/2011	17.0	1/24/2012	124
7/5/2011	17.0	2/14/2012	126
8/3/2011	14.0	3/14/2012	128
9/7/2011	16.0	4/10/2012	128
10/4/2011	16.0	5/2/2012	124
11/8/2011	16.0	6/18/2012	131
12/12/2011	16.0	7/10/2012	128
1/24/2012	17.0	8/7/2012	139
2/14/2012	17.0	9/19/2012	130

M	W-	30

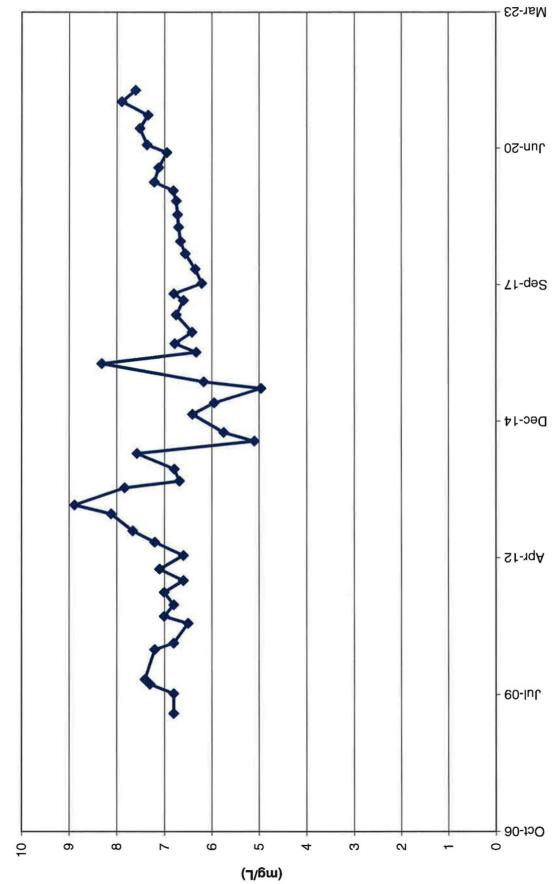
MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/14/2012	18.0	10/23/2012	135
4/10/2012	17.0	11/13/2012	114
5/2/2012	16.0	12/26/2012	122
6/18/2012	15.0	1/23/2013	128
7/10/2012	17.0	2/26/2013	129
8/7/2012	18.0	3/20/2013	126
9/19/2012	16.0	4/17/2013	117
10/23/2012	16.2	5/15/2013	119
11/13/2012	18.5	6/25/2013	127
12/26/2012	17.2	7/10/2013	130
1/23/2013	19.2	8/20/2013	126
2/26/2013	21.4	9/18/2013	131
3/20/2013	14.3	10/22/2013	128
4/17/2013	16.8	11/20/2013	124
5/15/2013	18.8	12/18/2013	134
6/25/2013	16.1	1/8/2014	131
7/10/2013	17.6	2/25/2014	135
8/20/2013	16.4	3/11/2014	144
9/18/2013	16.9	4/23/2014	154
10/22/2013	19.7	5/14/2014	128
11/20/2013	19.5	6/3/2014	128
12/18/2013	20.7	7/29/2014	140
1/8/2014	20.3	8/20/2014	139
2/25/2014	18.4	9/9/2014	136
3/11/2014	21.3	10/7/2014	136
4/23/2014	18.3	11/10/2014	154
5/14/2014	17.9	12/10/2014	138
6/3/2014	19.4	1/21/2015	144
7/29/2014	15.6	2/4/2015	136
8/20/2014	13.8	3/3/2015	132
9/9/2014	16.8	4/8/2015	142
10/7/2014	11.0	5/12/2015	145
11/10/2014	16.2	6/24/2015	142
12/10/2014	17.1	7/7/2015	145
1/21/2015	19.5	8/11/2015	165
2/4/2015	14.9	9/15/2015	165
3/3/2015	17.3	10/7/2015	137
4/8/2015	17.0	11/11/2015	140
5/12/2015	16.1	12/9/2015	144
6/24/2015	15.8	1/20/2016	143
7/7/2015	15.3	2/10/2016	145
8/11/2015	17.9	3/2/2016	142

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/15/2015	17.3	4/13/2016	144
10/7/2015	19.1	5/4/2016	139
11/11/2015	16.3	6/14/2016	142
12/9/2015	18.2	7/13/2016	137
1/20/2016	14.6	8/18/2016	150
2/10/2016	20.0	9/14/2016	146
3/2/2016	17.8	10/5/2016	148
4/13/2016	18.0	11/3/2016	143
5/4/2016	17.3	12/6/2016	158
6/14/2016	18.5	1/18/2017	150
7/13/2016	16.1	2/2/2017	150
8/18/2016	18.0	3/6/2017	250
9/14/2016	17.0	4/5/2017	146
10/5/2016	17.2	5/2/2017	146
11/3/2016	18.0	6/5/2017	153
12/6/2016	18.2	7/11/2017	160
1/18/2017	19.0	8/14/2017	173
2/2/2017	17.4	9/12/2017	149
3/6/2017	20.4	10/5/2017	153
4/5/2017	18.3	11/1/2017	156
5/2/2017	17.5	12/6/2017	159
6/5/2017	18.8	1/23/2018	152
7/11/2017	16.2	2/22/2018	158
8/14/2017	19.2	3/8/2018	167
9/12/2017	18.7	4/12/2018	145
10/5/2017	18.8	5/15/2018	174
11/1/2017	17.4	6/19/2018	169
12/6/2017	18.3	7/24/2018	177
1/23/2018	15.2	8/10/2018	170
2/22/2018	17.6	9/11/2018	183
3/8/2018	17.0	10/22/2018	140
4/12/2018	17.3	11/14/2018	166
5/15/2018	17.7	12/11/2018	154
6/19/2018	16.9	1/16/2019	157
7/24/2018	17.4	2/13/2019	167
8/10/2018	18.7	3/6/2019	160
9/11/2018	18.0	4/9/2019	138
10/22/2018	17.3	5/7/2019	175
11/14/2018	16.9	6/3/2019	165
12/11/2018	17.2	7/16/2019	181
1/16/2019	17.9	8/6/2019	190
2/13/2019	18.2	9/24/2019	176

DateNitrate (mg/l)DateChloride (mg/l)3/6/201916.210/8/20191704/9/201918.511/13/20191805/7/201917.912/4/20191856/3/201915.81/15/20201827/16/201919.32/5/20201878/6/201915.83/11/20201829/24/201917.94/6/202019510/8/201918.25/6/202017711/13/201917.26/3/202018012/4/201917.87/6/20201851/15/202016.48/11/20201832/5/202017.89/1/20201663/11/202019.010/13/20201834/6/202018.111/17/20201505/6/202018.612/8/20201666/3/202018.31/11/20211847/6/202018.34/14/202116210/13/202016.85/11/202118811/17/202013.46/8/202117012/8/202012.07/29/202118811/17/202013.46/8/202117012/8/202012.07/29/20211833/9/202117.014.39/8/20214/14/202117.78/9/20211612/10/202118.65/11/20211833/9/202117.017.75/11/202118.65/11/20216/8/202117.017.75/11/202118.65/11/2021 <th>MW-30</th> <th></th> <th></th> <th></th>	MW-30			
4/9/2019 18.5 11/13/2019 180 5/7/2019 17.9 12/4/2019 185 6/3/2019 15.8 1/15/2020 182 7/16/2019 19.3 2/5/2020 187 8/6/2019 15.8 3/11/2020 182 9/24/2019 17.9 4/6/2020 195 10/8/2019 18.2 5/6/2020 177 11/13/2019 17.2 6/3/2020 180 12/4/2019 17.8 7/6/2020 185 1/15/2020 16.4 8/11/2020 183 2/5/2020 17.8 9/1/2020 186 3/11/2020 19.0 10/13/2020 183 4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.3 4/14/2021 162 10/13/2020 18.3 4/14/2021 162 10/13/2020 18.3 5/11/2021 188 11/17/2020 13.4 6/8/2021 170	Date	Nitrate (mg/l)	Date	Chloride (mg/l)
5/7/2019 17.9 $12/4/2019$ 185 $6/3/2019$ 15.8 $1/15/2020$ 182 $7/16/2019$ 19.3 $2/5/2020$ 187 $8/6/2019$ 15.8 $3/11/2020$ 182 $9/24/2019$ 17.9 $4/6/2020$ 195 $10/8/2019$ 18.2 $5/6/2020$ 177 $11/13/2019$ 17.2 $6/3/2020$ 180 $12/4/2019$ 17.8 $7/6/2020$ 183 $1/15/2020$ 16.4 $8/11/2020$ 183 $2/5/2020$ 17.8 $9/1/2020$ 166 $3/11/2020$ 19.0 $10/13/2020$ 183 $4/6/2020$ 18.1 $11/17/2020$ 150 $5/6/2020$ 18.6 $12/8/2020$ 166 $6/3/2020$ 18.4 $2/10/2021$ 189 $8/11/2020$ 18.3 $4/14/2021$ 162 $10/13/2020$ 16.8 $5/11/2021$ 188 $11/17/2020$ 13.4 $6/8/2021$ 170 $12/8/2020$ 12.0 $7/29/2021$ 183 $3/9/2021$ 17.7 $8/9/2021$ 161 $2/10/2021$ 14.3 $9/8/2021$ 183 $3/9/2021$ 17.0 17.0 17.0 $4/14/2021$ 17.0 17.0 17.0 $7/29/2021$ 20.6 $8/9/2021$ 16.5	3/6/2019	16.2	10/8/2019	170
6/3/201915.8 $1/15/2020$ 182 $7/16/2019$ 19.3 $2/5/2020$ 187 $8/6/2019$ 15.8 $3/11/2020$ 182 $9/24/2019$ 17.9 $4/6/2020$ 195 $10/8/2019$ 18.2 $5/6/2020$ 177 $11/13/2019$ 17.2 $6/3/2020$ 180 $12/4/2019$ 17.8 $7/6/2020$ 185 $1/15/2020$ 16.4 $8/11/2020$ 183 $2/5/2020$ 17.8 $9/1/2020$ 166 $3/11/2020$ 19.0 $10/13/2020$ 183 $4/6/2020$ 18.1 $11/17/2020$ 150 $5/6/2020$ 18.6 $12/8/2020$ 166 $6/3/2020$ 18.3 $1/11/2021$ 184 $7/6/2020$ 18.4 $2/10/2021$ 189 $8/11/2020$ 21.1 $3/9/2021$ 192 $9/1/2020$ 18.3 $4/14/2021$ 162 $10/13/2020$ 16.8 $5/11/2021$ 188 $11/17/2020$ 13.4 $6/8/2021$ 170 $12/8/2020$ 12.0 $7/29/2021$ 183 $3/9/2021$ 17.0 $7/29/2021$ 183 $3/9/2021$ 17.0 $7/29/2021$ 183 $3/9/2021$ 17.0 $7/29/2021$ 20.6 $8/9/2021$ 16.5 $4/9/2021$ 16.5	4/9/2019	18.5	11/13/2019	180
7/16/201919.3 $2/5/2020$ 187 $8/6/2019$ 15.8 $3/11/2020$ 182 $9/24/2019$ 17.9 $4/6/2020$ 195 $10/8/2019$ 18.2 $5/6/2020$ 177 $11/13/2019$ 17.2 $6/3/2020$ 180 $12/4/2019$ 17.8 $7/6/2020$ 185 $1/15/2020$ 16.4 $8/11/2020$ 183 $2/5/2020$ 17.8 $9/1/2020$ 166 $3/11/2020$ 19.0 $10/13/2020$ 183 $4/6/2020$ 18.1 $11/17/2020$ 150 $5/6/2020$ 18.6 $12/8/2020$ 166 $6/3/2020$ 18.3 $1/11/2021$ 184 $7/6/2020$ 18.4 $2/10/2021$ 189 $8/11/2020$ 21.1 $3/9/2021$ 192 $9/1/2020$ 18.3 $4/14/2021$ 162 $10/13/2020$ 16.8 $5/11/2021$ 188 $11/17/2020$ 13.4 $6/8/2021$ 170 $12/8/2020$ 12.0 $7/29/2021$ 183 $3/9/2021$ 17.0 $7/29/2021$ 183 $3/9/2021$ 17.0 $7/29/2021$ 18.6 $6/8/2021$ 17.0 $7/29/2021$ 20.6 $8/9/2021$ 16.5 $4/9/2021$ 16.5	5/7/2019	17.9	12/4/2019	185
8/6/2019 15.8 3/1/2020 182 9/24/2019 17.9 4/6/2020 195 10/8/2019 18.2 5/6/2020 177 11/13/2019 17.2 6/3/2020 180 12/4/2019 17.8 7/6/2020 185 1/15/2020 16.4 8/11/2020 183 2/5/2020 17.8 9/1/2020 166 3/11/2020 19.0 10/13/2020 183 4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 17.0 17.0 <td>6/3/2019</td> <td>15.8</td> <td>1/15/2020</td> <td>182</td>	6/3/2019	15.8	1/15/2020	182
9/24/2019 17.9 4/6/2020 195 10/8/2019 18.2 5/6/2020 177 11/13/2019 17.2 6/3/2020 180 12/4/2019 17.8 7/6/2020 185 1/15/2020 16.4 8/11/2020 183 2/5/2020 17.8 9/1/2020 166 3/11/2020 19.0 10/13/2020 183 4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6 5/11/2021 183	7/16/2019	19.3	2/5/2020	187
10/8/2019 18.2 5/6/2020 177 11/13/2019 17.2 6/3/2020 180 12/4/2019 17.8 7/6/2020 185 1/15/2020 16.4 8/11/2020 183 2/5/2020 17.8 9/1/2020 166 3/11/2020 19.0 10/13/2020 183 4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 183 3/9/2021 17.0 4/14/2021 161 2/10/2021 18.6 6/8/2021 17.0 4/14/2021 17.0 7/29/2021 18.3	8/6/2019	15.8	3/11/2020	182
11/13/201917.26/3/202018012/4/201917.87/6/20201851/15/202016.48/11/20201832/5/202017.89/1/20201663/11/202019.010/13/20201834/6/202018.111/17/20201505/6/202018.612/8/20201666/3/202018.31/11/20211847/6/202018.42/10/20211898/11/202021.13/9/20211929/1/202018.34/14/202116210/13/202016.85/11/202118811/17/202013.46/8/202117012/8/202012.07/29/20211881/11/202117.78/9/20211612/10/202114.39/8/20211833/9/202117.04/14/202117.75/11/202118.66/8/202117.07/29/202120.68/9/202116.5	9/24/2019	17.9	4/6/2020	195
12/4/2019 17.8 7/6/2020 185 1/15/2020 16.4 8/11/2020 183 2/5/2020 17.8 9/1/2020 166 3/11/2020 19.0 10/13/2020 183 4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6 6/8/2021 17.0 7/29/2021 20.6 8/9/2021 16.5	10/8/2019	18.2	5/6/2020	177
1/15/202016.48/11/20201832/5/202017.89/1/20201663/11/202019.010/13/20201834/6/202018.111/17/20201505/6/202018.612/8/20201666/3/202018.31/11/20211847/6/202018.42/10/20211929/1/202021.13/9/20211929/1/202018.34/14/202116210/13/202016.85/11/202118811/17/202013.46/8/202117012/8/202012.07/29/20211881/11/202117.78/9/20211612/10/202114.39/8/20211612/10/202118.6	11/13/2019	17.2	6/3/2020	180
2/5/202017.89/1/20201663/11/202019.010/13/20201834/6/202018.111/17/20201505/6/202018.612/8/20201666/3/202018.31/11/20211847/6/202018.42/10/20211898/11/202021.13/9/20211929/1/202018.34/14/202116210/13/202016.85/11/202118811/17/202013.46/8/202117012/8/202012.07/29/20211881/11/202117.78/9/20211612/10/202114.39/8/20211833/9/202117.04/14/202117.75/11/202118.6	12/4/2019	17.8	7/6/2020	185
3/11/2020 19.0 10/13/2020 183 4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6	1/15/2020	16.4	8/11/2020	183
4/6/2020 18.1 11/17/2020 150 5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6	2/5/2020	17.8	9/1/2020	166
5/6/2020 18.6 12/8/2020 166 6/3/2020 18.3 1/11/2021 184 7/6/2020 18.4 2/10/2021 189 8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 17.0 17.7 18.6 6/8/2021 17.0 17.0 17.0 7/29/2021 20.6 8/9/2021 16.5	3/11/2020	19.0	10/13/2020	183
6/3/202018.3 $1/11/2021$ 184 $7/6/2020$ 18.4 $2/10/2021$ 189 $8/11/2020$ 21.1 $3/9/2021$ 192 $9/1/2020$ 18.3 $4/14/2021$ 162 $10/13/2020$ 16.8 $5/11/2021$ 188 $11/17/2020$ 13.4 $6/8/2021$ 170 $12/8/2020$ 12.0 $7/29/2021$ 188 $1/11/2021$ 17.7 $8/9/2021$ 161 $2/10/2021$ 14.3 $9/8/2021$ 183 $3/9/2021$ 17.017.7 $5/11/2021$ 18.6 $6/8/2021$ 17.0 $7/29/2021$ 18.6 $6/8/2021$ 17.0 $7/29/2021$ 20.6 $8/9/2021$ 16.5	4/6/2020	18.1	11/17/2020	150
7/6/202018.4 $2/10/2021$ 189 $8/11/2020$ 21.1 $3/9/2021$ 192 $9/1/2020$ 18.3 $4/14/2021$ 162 $10/13/2020$ 16.8 $5/11/2021$ 188 $11/17/2020$ 13.4 $6/8/2021$ 170 $12/8/2020$ 12.0 $7/29/2021$ 188 $1/11/2021$ 17.7 $8/9/2021$ 161 $2/10/2021$ 14.3 $9/8/2021$ 183 $3/9/2021$ 17.018.6 $6/8/2021$ 17.017.0 $7/29/2021$ 18.6 $6/8/2021$ 17.0 $7/29/2021$ 20.6 $8/9/2021$ 16.5	5/6/2020	18.6	12/8/2020	166
8/11/2020 21.1 3/9/2021 192 9/1/2020 18.3 4/14/2021 162 10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6 6/8/2021 183 6/8/2021 17.0 7/29/2021 20.6 8/9/2021 16.5	6/3/2020	18.3	1/11/2021	184
9/1/202018.34/14/202116210/13/202016.85/11/202118811/17/202013.46/8/202117012/8/202012.07/29/20211881/11/202117.78/9/20211612/10/202114.39/8/20211833/9/202117.04/14/202117.75/11/202118.66/8/202118.66/8/202117.07/29/202120.68/9/202116.516.5	7/6/2020	18.4	2/10/2021	189
10/13/2020 16.8 5/11/2021 188 11/17/2020 13.4 6/8/2021 170 12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6	8/11/2020	21.1	3/9/2021	192
11/17/202013.46/8/202117012/8/202012.07/29/20211881/11/202117.78/9/20211612/10/202114.39/8/20211833/9/202117.017.75/11/202118.66/8/202117.07/29/202120.68/9/202116.5	9/1/2020	18.3	4/14/2021	162
12/8/2020 12.0 7/29/2021 188 1/11/2021 17.7 8/9/2021 161 2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6	10/13/2020	16.8	5/11/2021	188
1/11/202117.78/9/20211612/10/202114.39/8/20211833/9/202117.014.31834/14/202117.718.66/8/202118.618.66/8/202117.018.67/29/202120.616.5	11/17/2020	13.4	6/8/2021	170
2/10/2021 14.3 9/8/2021 183 3/9/2021 17.0 17.7 4/14/2021 17.7 18.6 6/8/2021 18.6 17.0 7/29/2021 20.6 8/9/2021 16.5	12/8/2020	12.0	7/29/2021	188
3/9/2021 17.0 4/14/2021 17.7 5/11/2021 18.6 6/8/2021 17.0 7/29/2021 20.6 8/9/2021 16.5	1/11/2021	17.7	8/9/2021	161
4/14/202117.75/11/202118.66/8/202117.07/29/202120.68/9/202116.5	2/10/2021	14.3	9/8/2021	183
5/11/202118.66/8/202117.07/29/202120.68/9/202116.5	3/9/2021	17.0		
6/8/202117.07/29/202120.68/9/202116.5	4/14/2021	17.7		
7/29/2021 20.6 8/9/2021 16.5	5/11/2021	18.6		
8/9/2021 16.5	6/8/2021	17.0		
	7/29/2021	20.6		
9/8/2021 15.4	8/9/2021	16.5		
	9/8/2021	15.4		

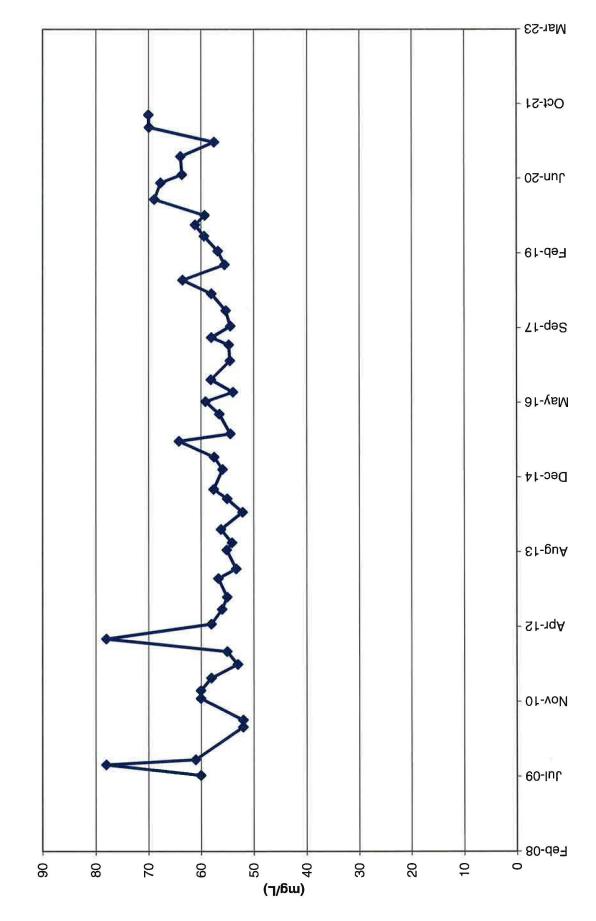
Under the groundwater sampling program, accelerated monitoring for nitrate began in MW-30 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

10100-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	24.2	6/22/2005	139
9/22/2005	22.4	9/22/2005	136
12/14/2005	23.8	12/14/2005	135
3/22/2006	24.1	3/22/2006	133
6/21/2006	25.3	6/21/2006	138
9/13/2006	24.6	9/13/2006	131
10/25/2006	25.1	10/25/2006	127
3/15/2007	23.2	3/15/2007	132
3/15/2007	22.0	3/15/2007	132
8/27/2007	23.3	8/27/2007	136
10/24/2007	24.6	10/24/2007	122
3/19/2008	25.0	3/19/2008	124
6/3/2008	29.3	6/3/2008	128
8/4/2008	28.7	8/4/2008	124
11/11/2008	29.9	11/11/2008	119
2/3/2009	23.4	2/3/2009	115
5/13/2009	22.4	5/13/2009	124
8/24/2009	15.4	8/24/2009	122
10/14/2009	22.6	10/14/2009	138
2/9/2010	21.7	2/9/2010	128
4/20/2010	22.5	4/20/2010	128
5/21/2010	23.0	9/13/2010	139
6/15/2010	21.1	11/9/2010	138
8/24/2010	22.0	2/1/2011	145
9/13/2010	21.0	4/1/2011	143
10/19/2010	20.0	5/10/2011	143
11/9/2010	20.0	6/20/2011	145
12/14/2010	20.0	7/5/2011	148
1/10/2011	19.0	8/2/2011	148
2/1/2011	21.0	9/6/2011	148
3/14/2011	22.0	10/3/2011	145
4/1/2011	21.0	11/8/2011	145
5/10/2011	20.0	12/12/2011	148
6/20/2011	22.0	1/24/2012	155
7/5/2011	22.0	2/13/2012	150
8/2/2011	20.0	3/13/2012	152
9/6/2011	21.0	4/9/2012	160
10/3/2011	21.0	5/2/2012	151
11/8/2011	21.0	6/18/2012	138
12/12/2011	21.0	7/9/2012	161
1/24/2012	21.0	8/6/2012	175
2/13/2012	21.0	9/18/2012	172

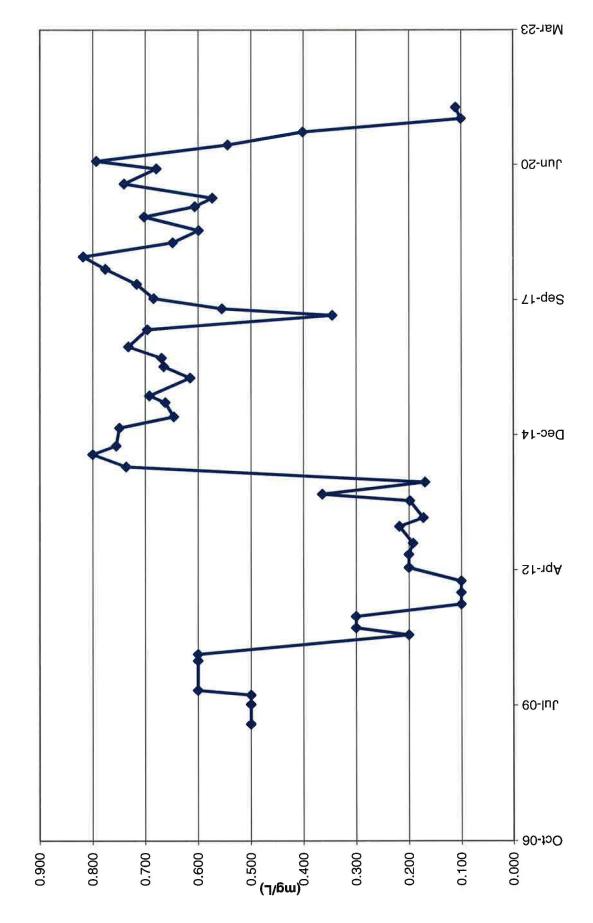

14144-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/13/2012	22.0	10/22/2012	157
4/9/2012	21.0	11/6/2012	189
5/2/2012	20.0	12/18/2012	170
6/18/2012	21.6	1/22/2013	176
7/9/2012	21.0	2/19/2013	174
8/6/2012	21.0	3/19/2013	168
9/18/2012	21.0	4/16/2013	171
10/22/2012	18.0	5/13/2013	169
11/6/2012	23.6	6/24/2013	179
12/18/2012	22.2	7/9/2013	182
1/22/2013	22.8	8/19/2013	183
2/19/2013	19.3	9/17/2013	193
3/19/2013	19.1	10/23/2013	188
4/16/2013	18.8	11/18/2013	174
5/13/2013	23.8	12/17/2013	203
6/24/2013	20.0	1/7/2014	194
7/9/2013	21.7	2/17/2014	197
8/19/2013	16.0	3/10/2014	230
9/17/2013	21.2	4/28/2014	230
10/23/2013	21.2	5/13/2014	200
11/18/2013	23.9	6/2/2014	173
12/17/2013	24.2	7/28/2014	200
1/7/2014	24.0	8/18/2014	210
2/17/2014	20.6	9/3/2014	210
3/10/2014	26.2	10/6/2014	205
4/28/2014	19.1	11/4/2014	204
5/13/2014	23.3	12/9/2014	215
6/2/2014	23.1	1/20/2015	226
7/28/2014	19.0	2/2/2015	211
8/18/2014	15.2	3/3/2015	209
9/3/2014	18.9	4/7/2015	211
10/6/2014	15.9	5/11/2015	225
11/4/2014	20.9	6/23/2015	228
12/9/2014	17.0	7/6/2015	222
1/20/2015	20.9	8/10/2015	264
2/2/2015	18.7	9/15/2015	231
3/3/2015	19.8	10/6/2015	222
4/7/2015	19.0	11/9/2015	215
5/11/2015	18.4	12/8/2015	231
6/23/2015	18.0	1/19/2016	228
7/6/2015	18.8	2/15/2016	246
8/10/2015	19.9	3/2/2016	228

IV1VV-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/15/2015	18.9	4/12/2016	254
10/6/2015	22.0	5/3/2016	243
11/9/2015	18.4	6/15/2016	252
12/8/2015	19.5	7/12/2016	241
1/19/2016	18.9	8/16/2016	272
2/15/2016	18.8	9/13/2016	254
3/2/2016	18.0	10/4/2016	260
4/12/2016	22.8	11/1/2016	267
5/3/2016	18.6	12/5/2016	274
6/15/2016	19.2	1/17/2017	287
7/12/2016	17.4	2/7/2017	266
8/16/2016	19.7	3/6/2017	250
9/13/2016	18.6	4/4/2017	263
10/4/2016	18.8	5/1/2017	263
11/1/2016	19.8	6/5/2017	278
12/5/2016	18.5	7/11/2017	254
1/17/2017	20.9	8/14/2017	310
2/7/2017	21.1	9/11/2017	248
3/6/2017	20.4	10/2/2017	287
4/4/2017	19.5	11/1/2017	292
5/1/2017	18.3	12/4/2017	285
6/5/2017	20.8	1/24/2018	323
7/11/2017	18.0	2/20/2018	292
8/14/2017	19.5	3/5/2018	311
9/11/2017	20.2	4/17/2018	308
10/2/2017	21.0	5/14/2018	326
11/1/2017	19.2	6/18/2018	359
12/4/2017	19.2	7/23/2018	351
1/24/2018	17.0	8/10/2018	336
2/20/2018	18.8	9/10/2018	333
3/5/2018	19.0	10/24/2018	286
4/17/2018	19.0	11/13/2018	281
5/14/2018	18.8	12/10/2018	302
6/18/2018	18.0	1/15/2019	283
7/23/2018	18.0	2/12/2019	296
8/10/2018	18.3	3/5/2019	322
9/10/2018	20.1	4/10/2019	294
10/24/2018	18.3	5/7/2019	346
11/13/2018	17.9	6/3/2019	325
12/10/2018	18.3	7/15/2019	374
1/15/2019	19.0	8/5/2019	372
2/12/2019	18.6	9/23/2019	365

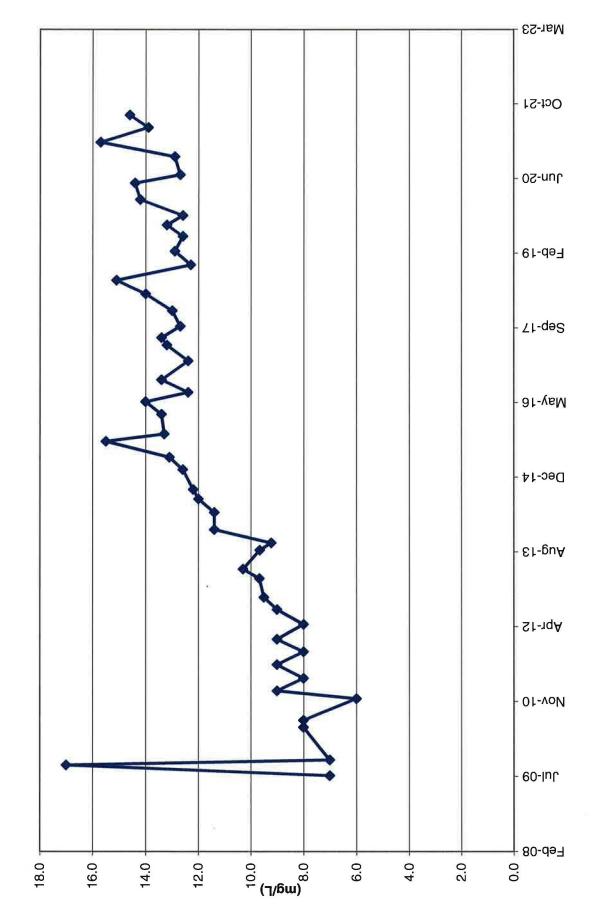
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/5/2019	18.5	10/9/2019	318
4/10/2019	19.7	11/12/2019	338
5/7/2019	18.9	12/3/2019	343
6/3/2019	19.7	1/14/2020	381
7/15/2019	19.8	2/4/2020	370
8/5/2019	17.0	3/10/2020	368
9/23/2019	19.5	4/6/2020	376
10/9/2019	19.8	5/5/2020	361
11/12/2019	18.8	6/2/2020	377
12/3/2019	18.3	7/7/2020	370
1/14/2020	17.5	8/10/2020	368
2/4/2020	18.0	9/1/2020	367
3/10/2020	19.2	10/19/2020	345
4/6/2020	18.8	11/16/2020	251
5/5/2020	20.1	12/7/2020	311
6/2/2020	18.7	1/12/2021	354
7/7/2020	19.2	2/9/2021	380
8/10/2020	21.6	3/8/2021	388
9/1/2020	18.4	4/13/2021	377
10/19/2020	18.6	5/10/2021	384
11/16/2020	16.5	6/7/2021	374
12/7/2020	18.8	7/27/2021	391
1/12/2021	17.1	8/9/2021	365
2/9/2021	14.3	9/7/2021	356
3/8/2021	17.4		
4/13/2021	18.6		
5/10/2021	18.9		
6/7/2021	20.6		
7/27/2021	18.7		
8/9/2021	15.7		
9/7/2021	16.0		

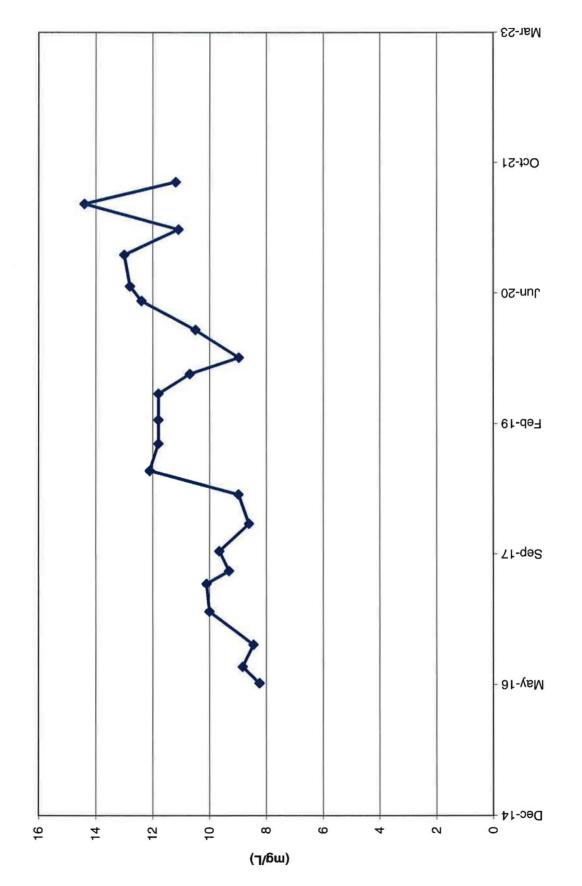

Under the groundwater sampling progran, accelerated monitoring for nitrate began in MW-31 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above. Tab K

Concentration Trend Graphs

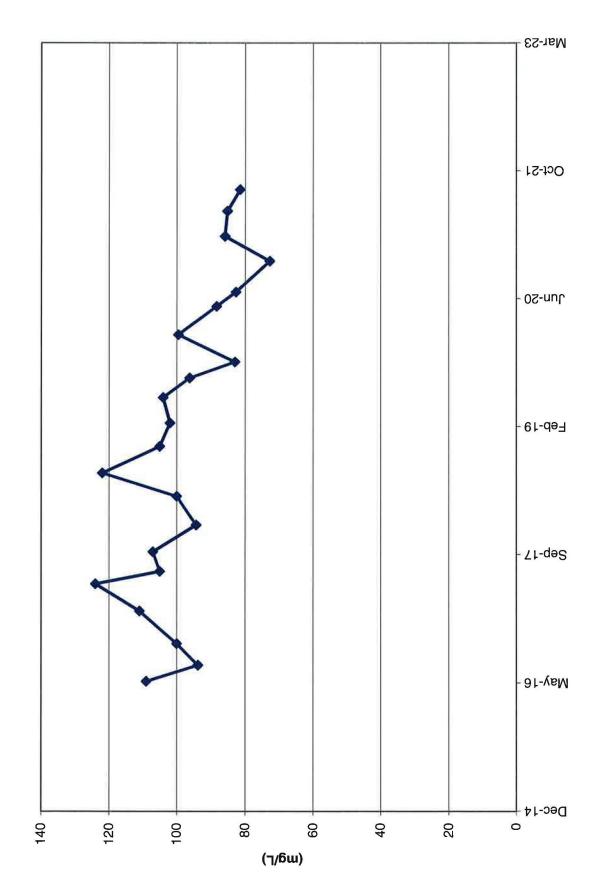


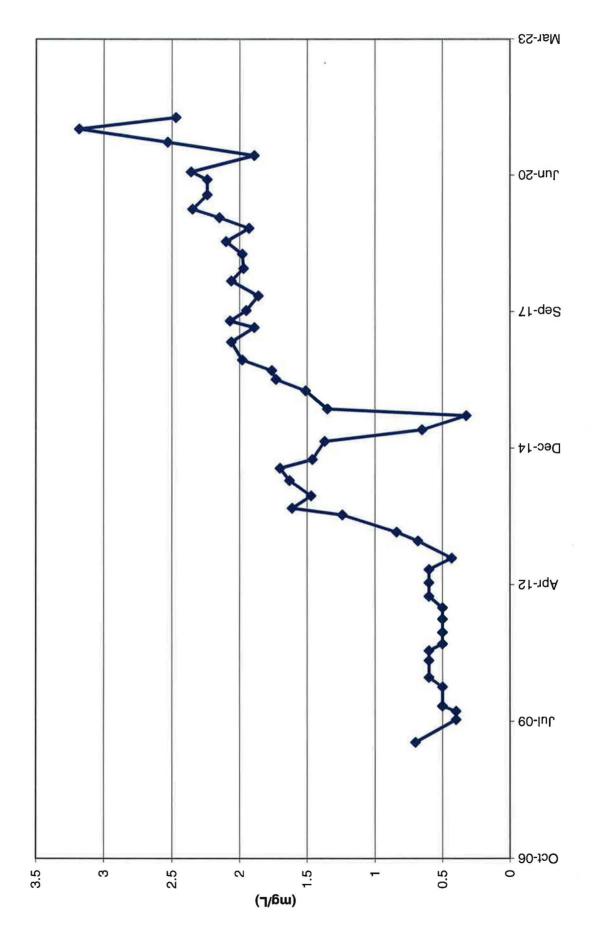
Piezometer 1 Nitrate Concentrations

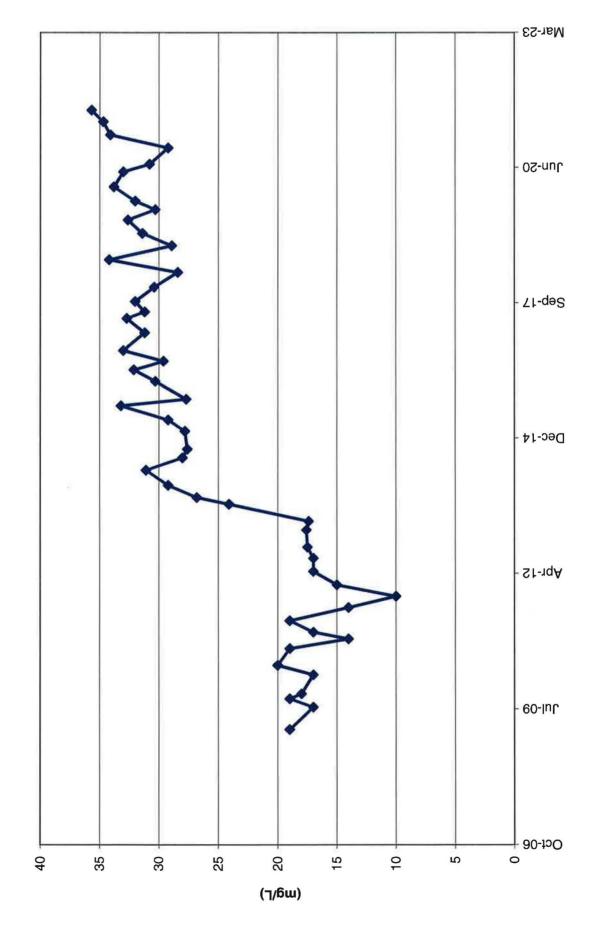

~ .


Piezometer 1 Chloride Concentrations

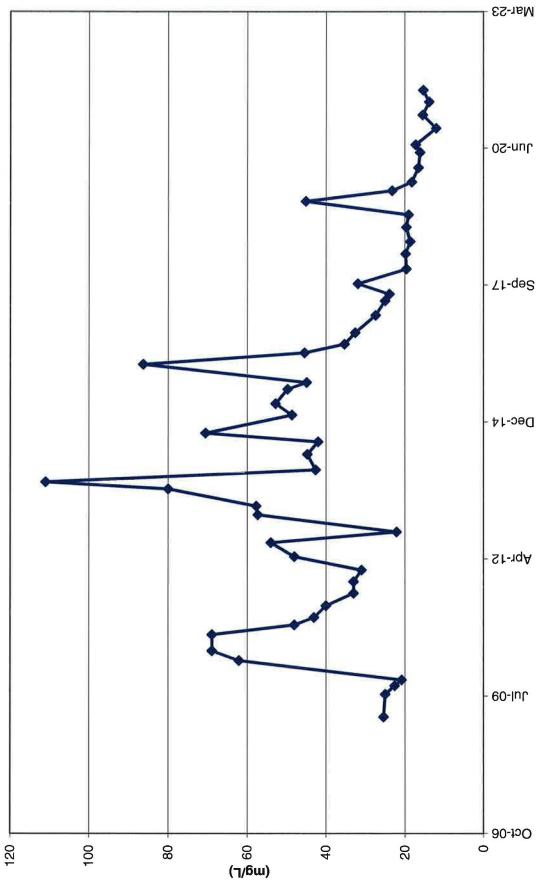
Piezometer 2 Nitrate Concentrations

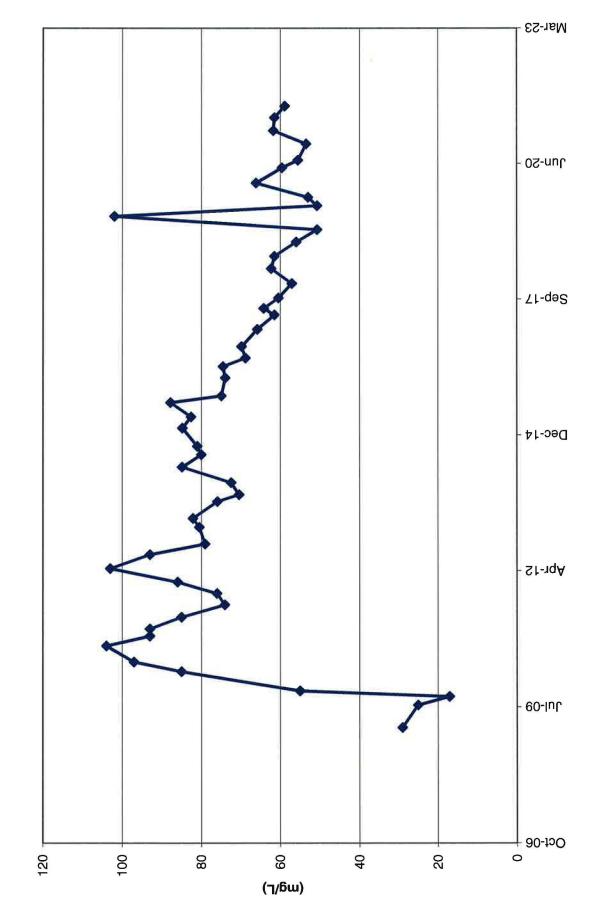


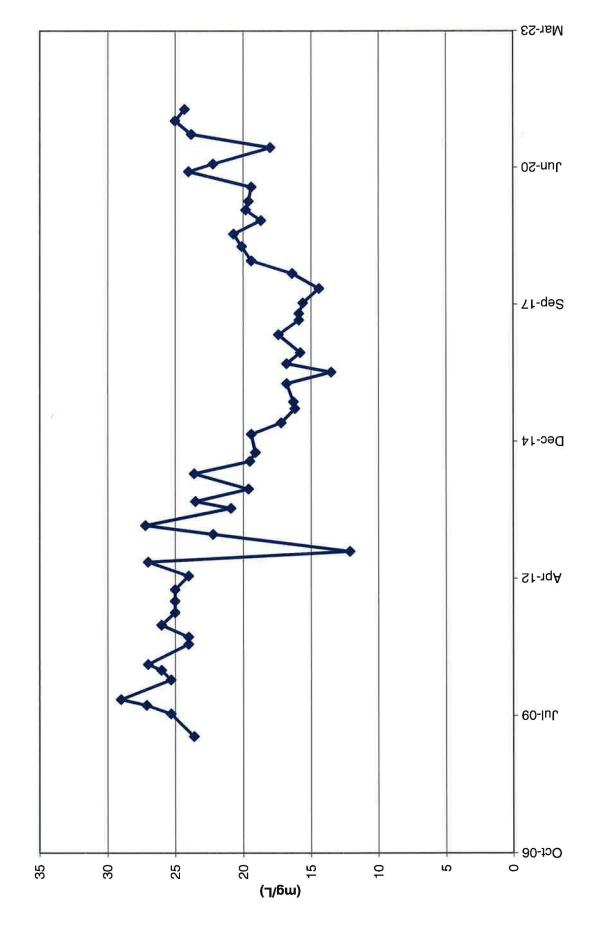

Piezometer 2 Chloride Concentrations

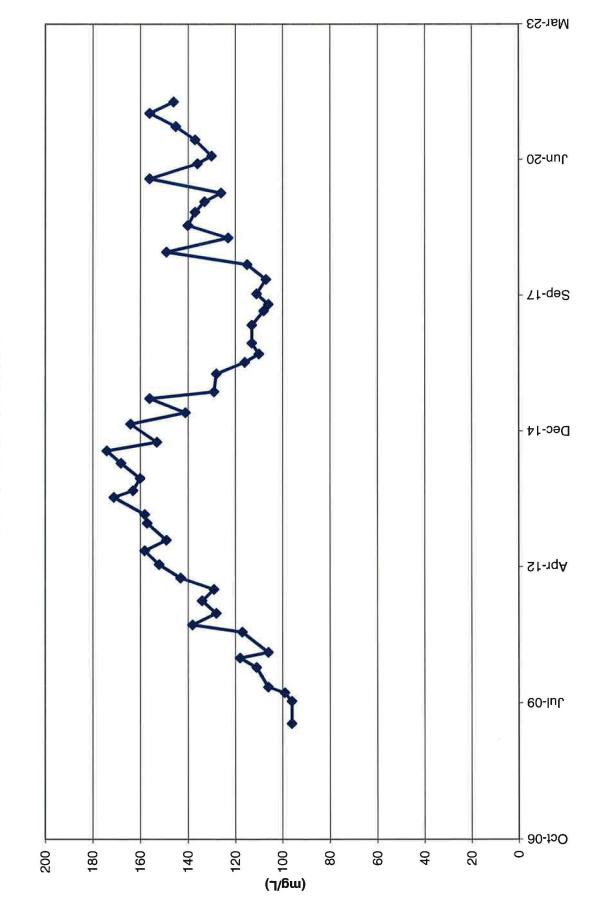


Piezometer 3A Chloride Concentrations

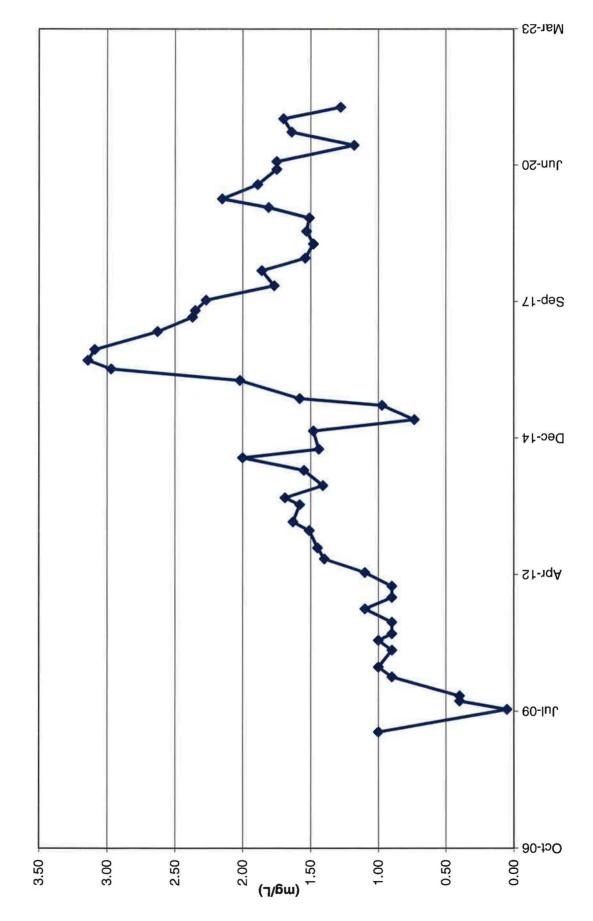




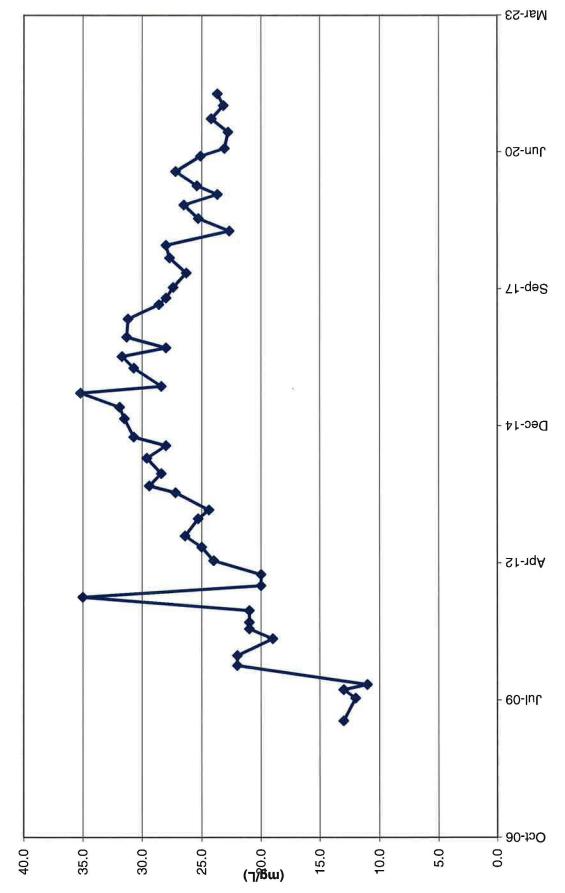

TWN-1 Chloride Concentrations



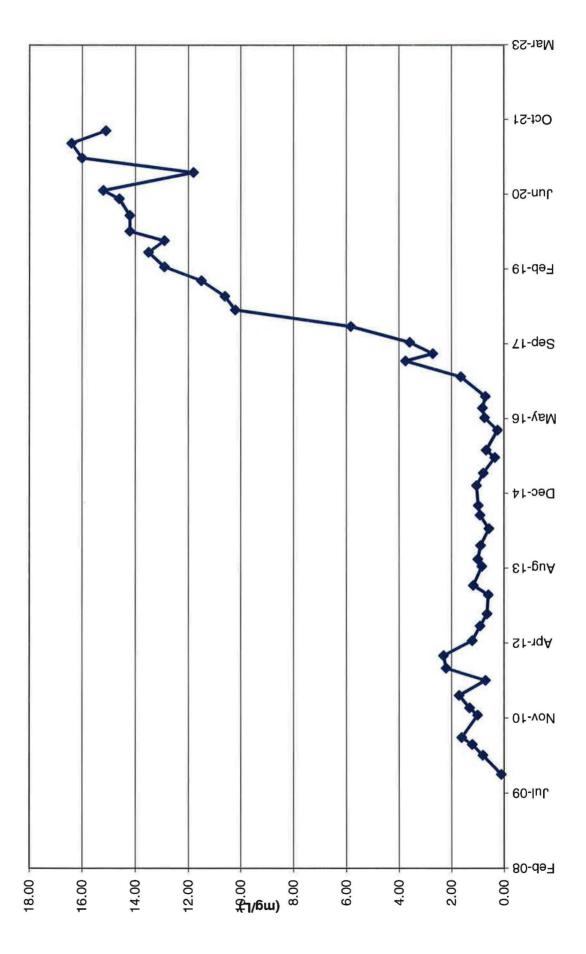
TWN-2 Chloride Concentrations

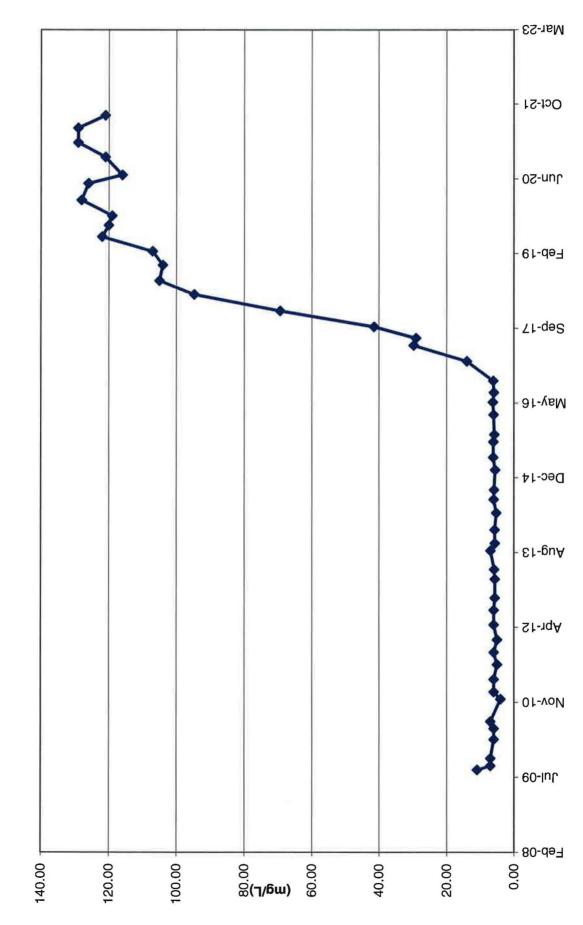


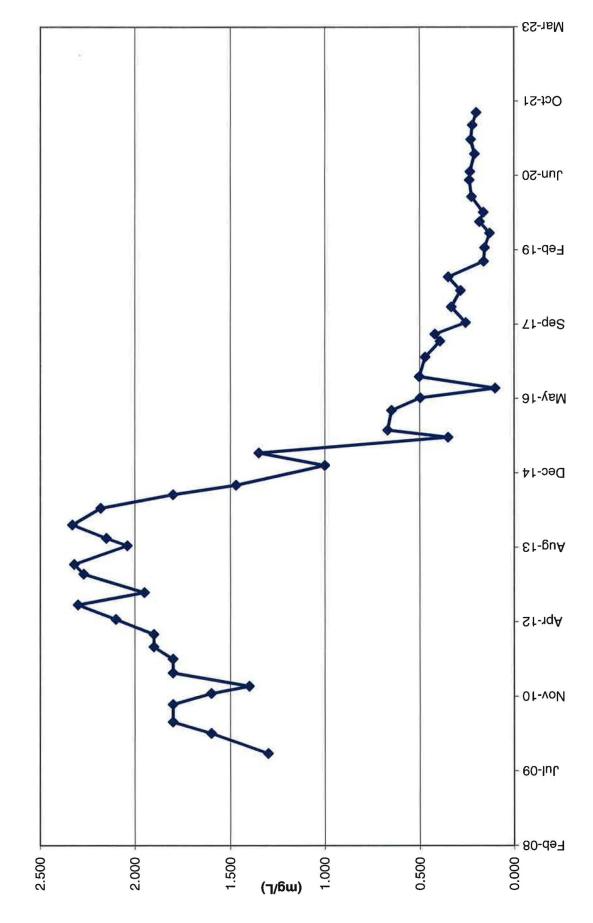
81

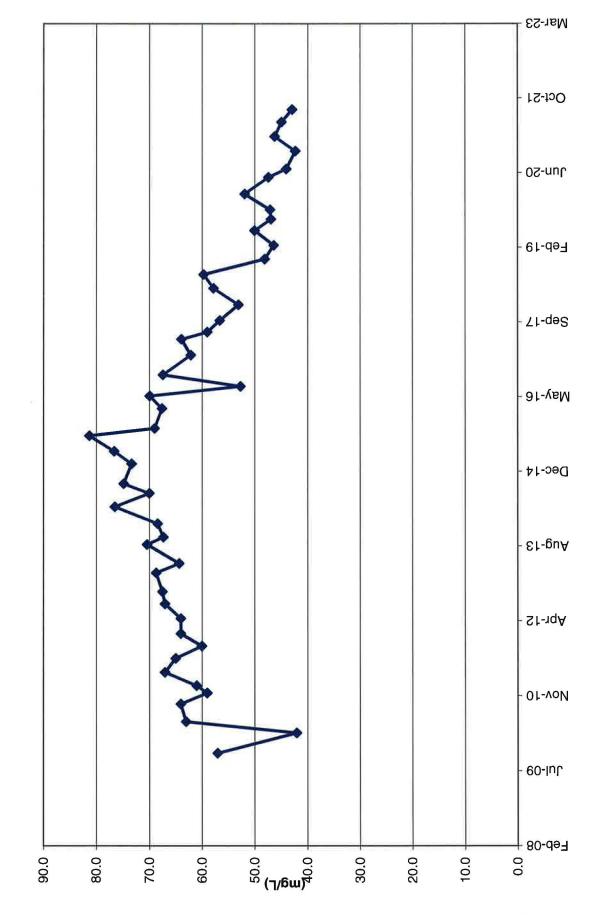

TWN-3 Nitrate Concentrations

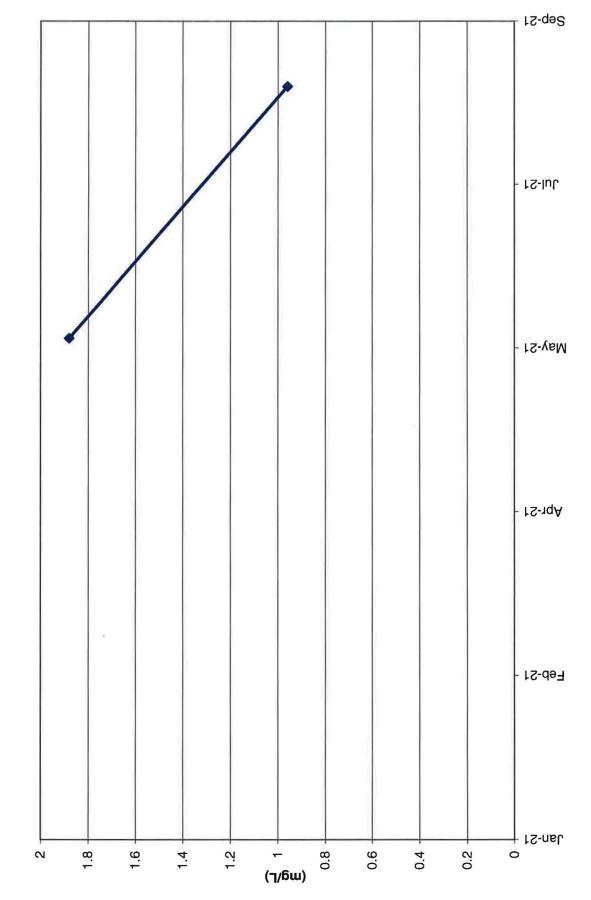
TWN-3 Chloride Concentrations

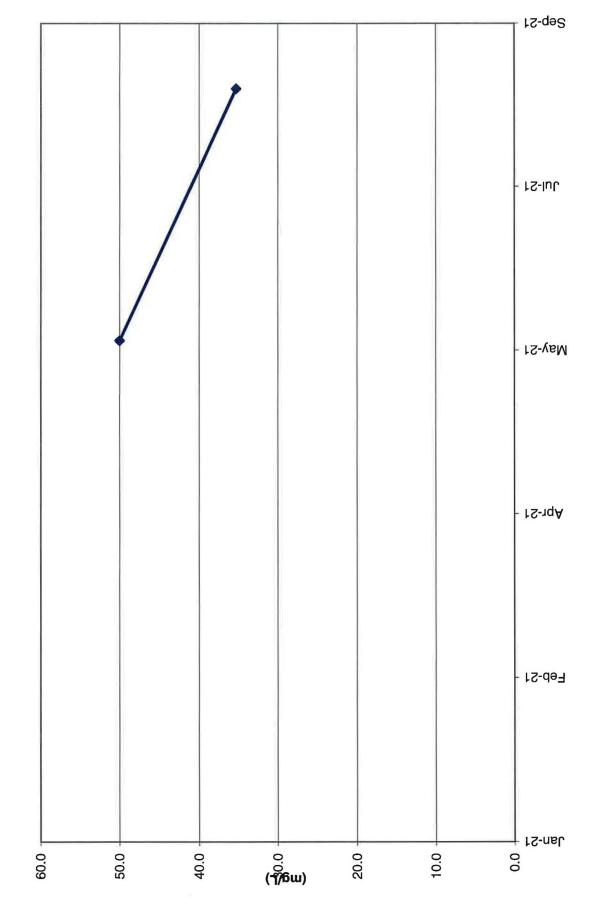


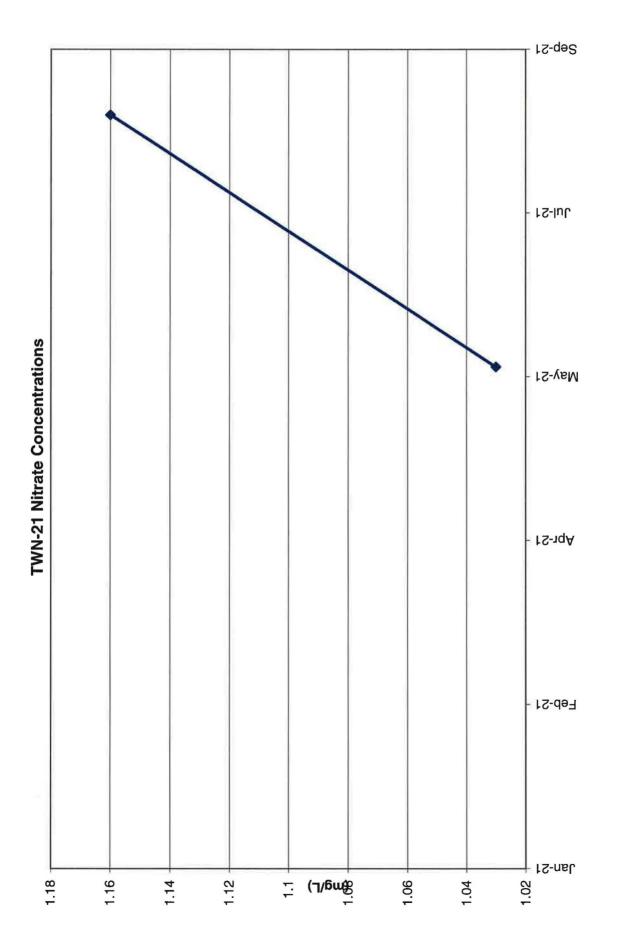


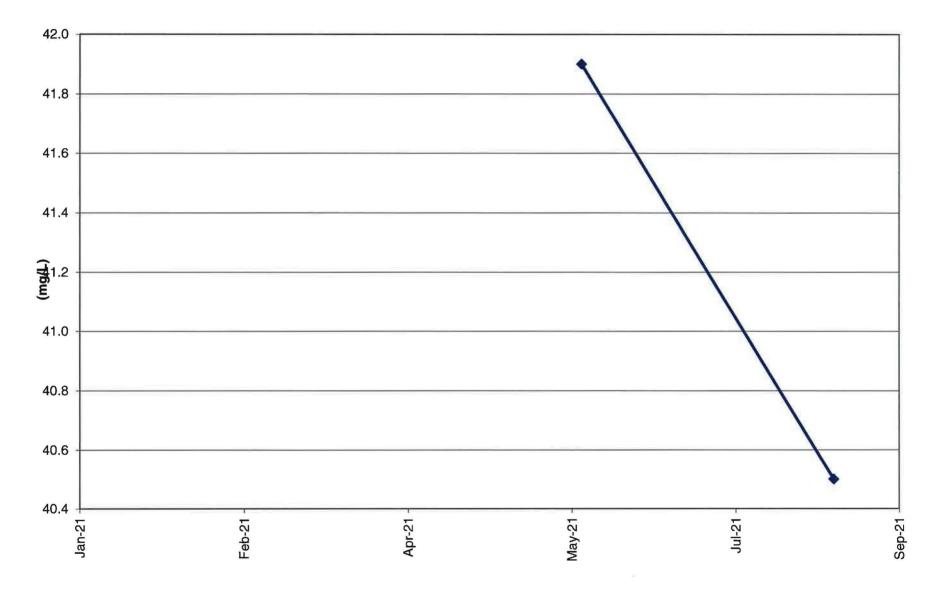

TWN-4 Chloride Concentrations

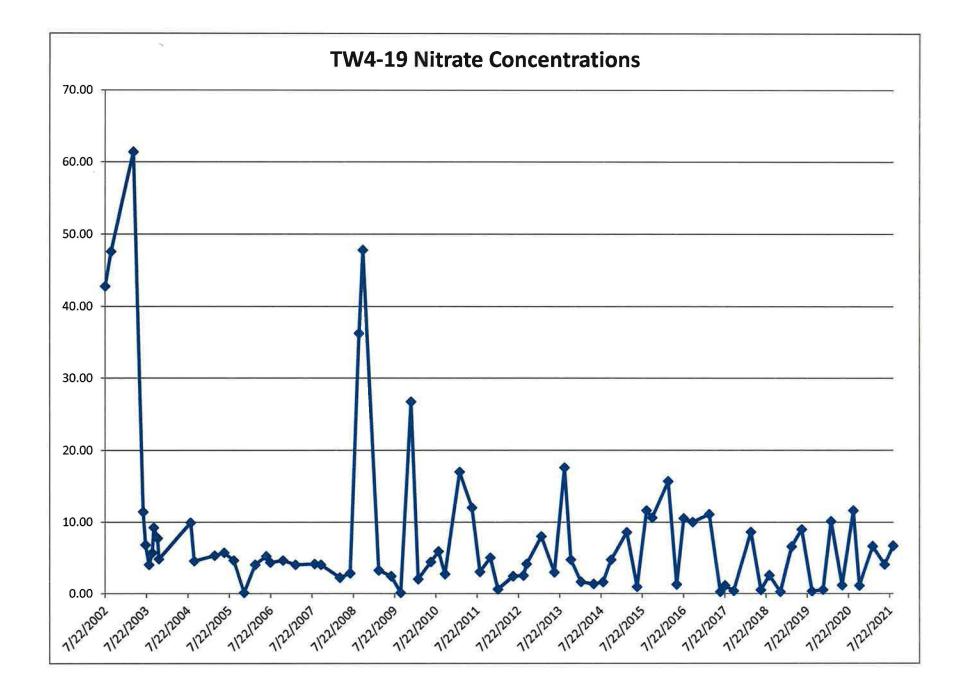


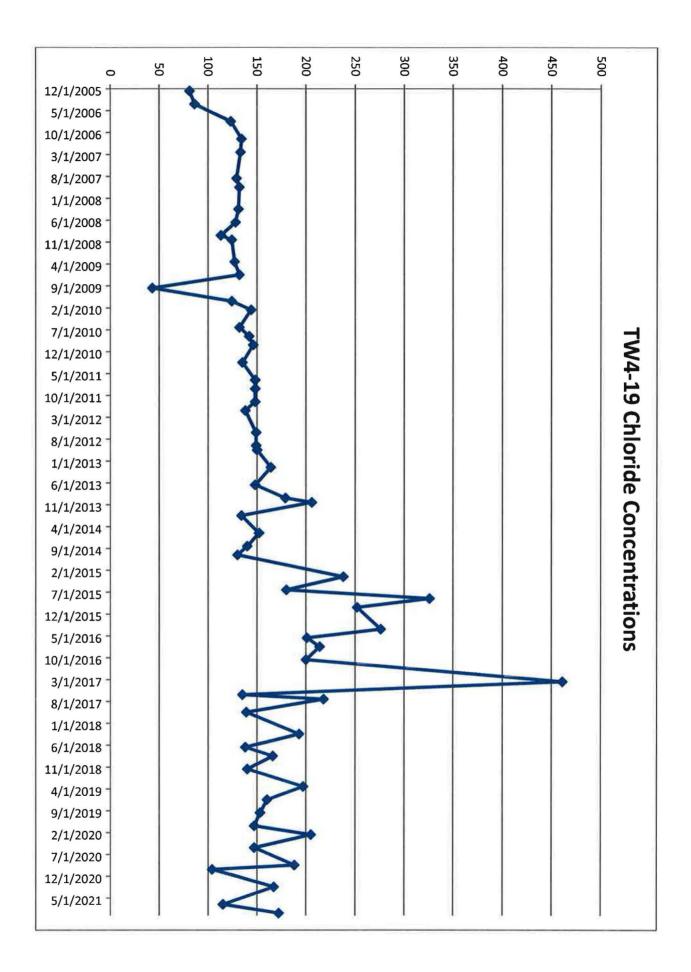

TWN-7 Chloride Concentrations

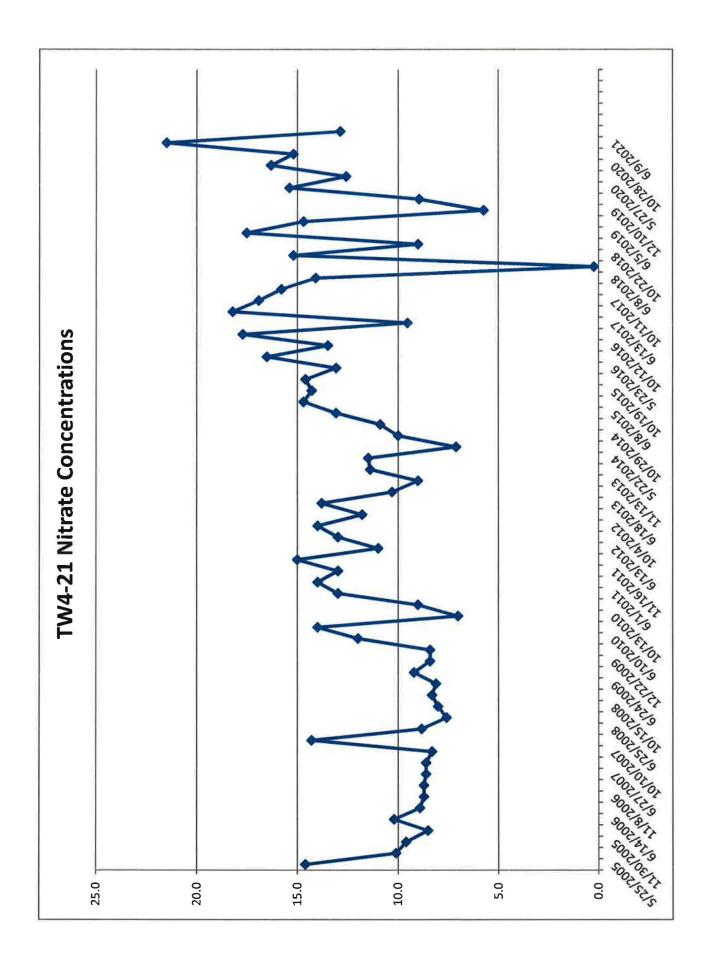

TWN-18 Nitrate Concentrations

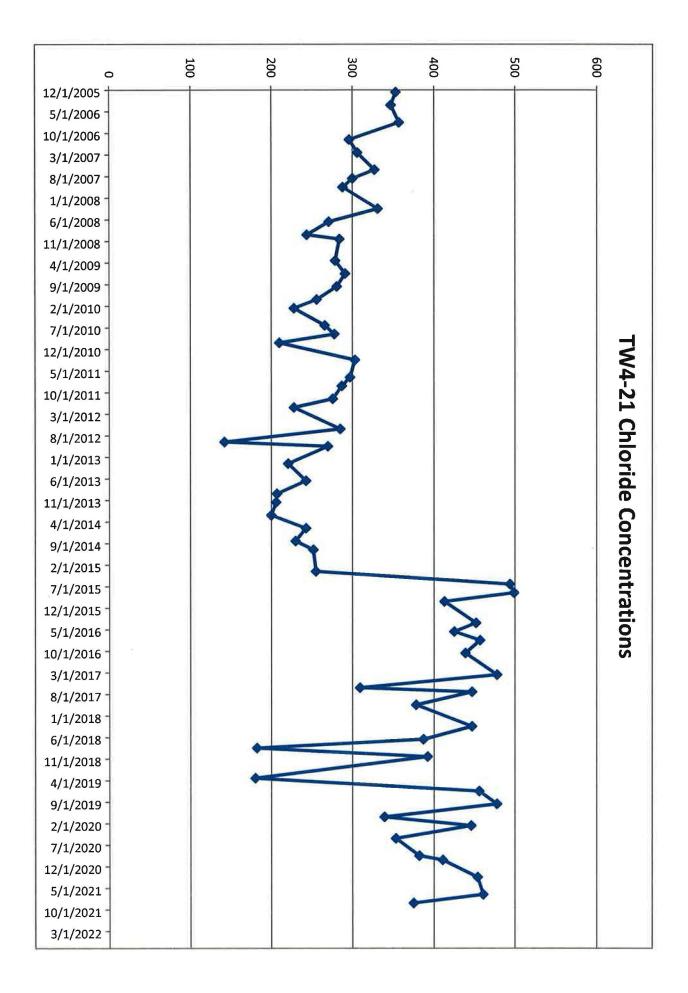

TWN-18 Chloride Concentrations

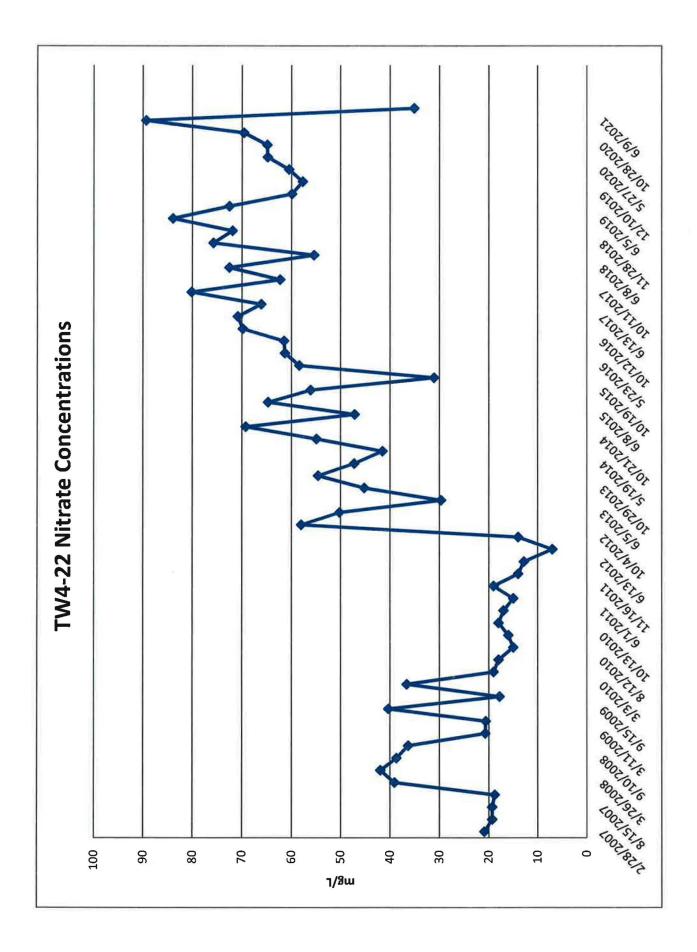

TWN-20 Nitrate Concentrations

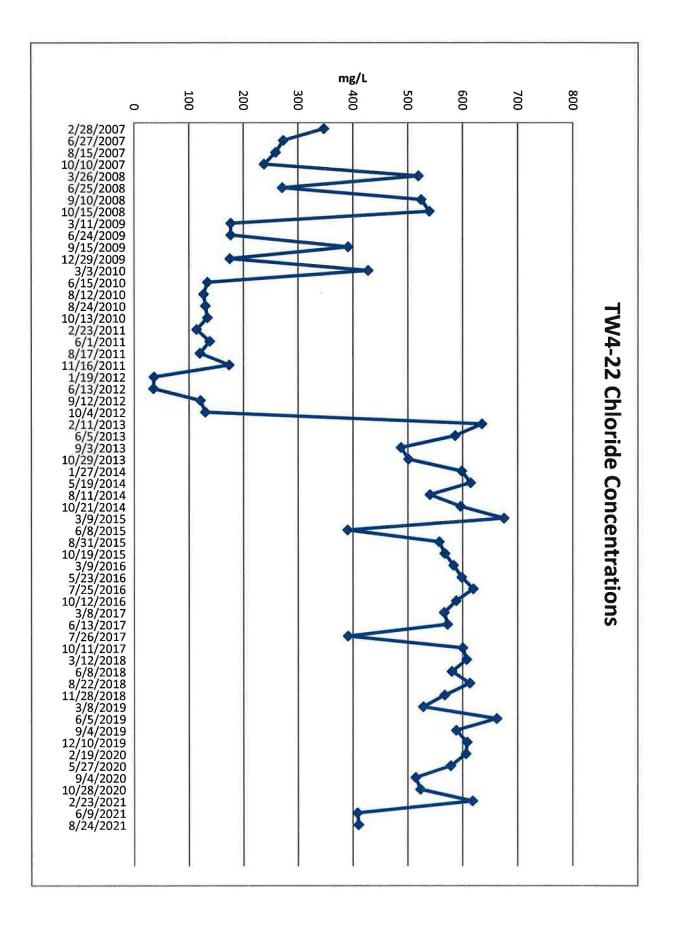


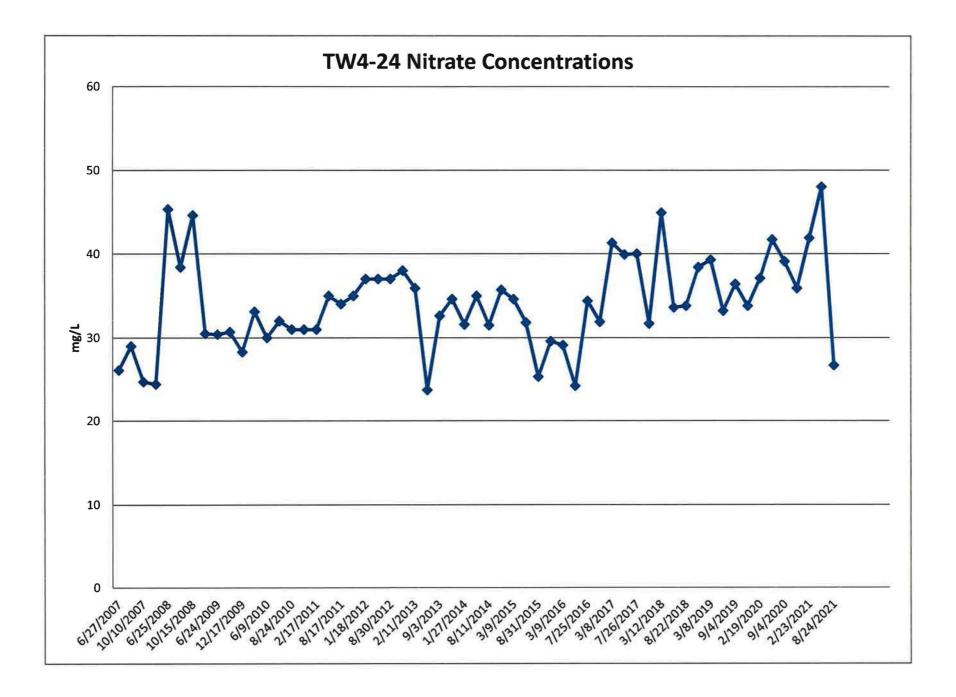

TWN-20 Chloride Concentrations

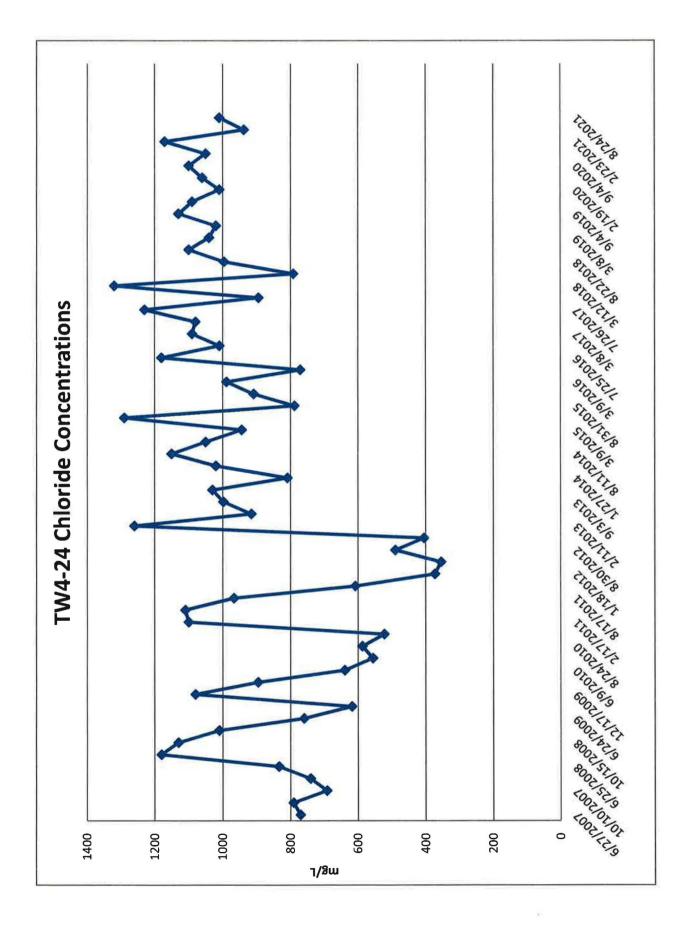


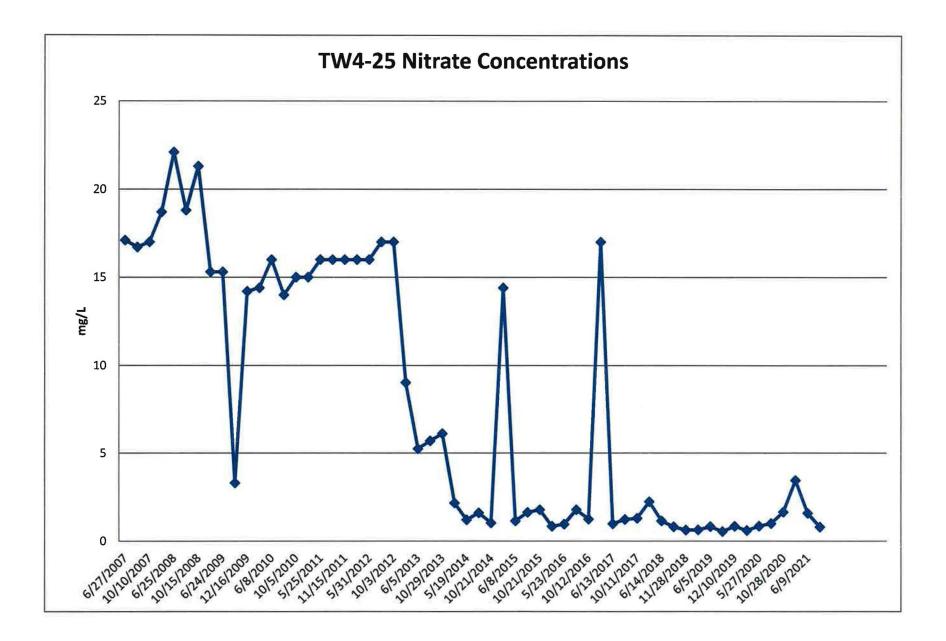


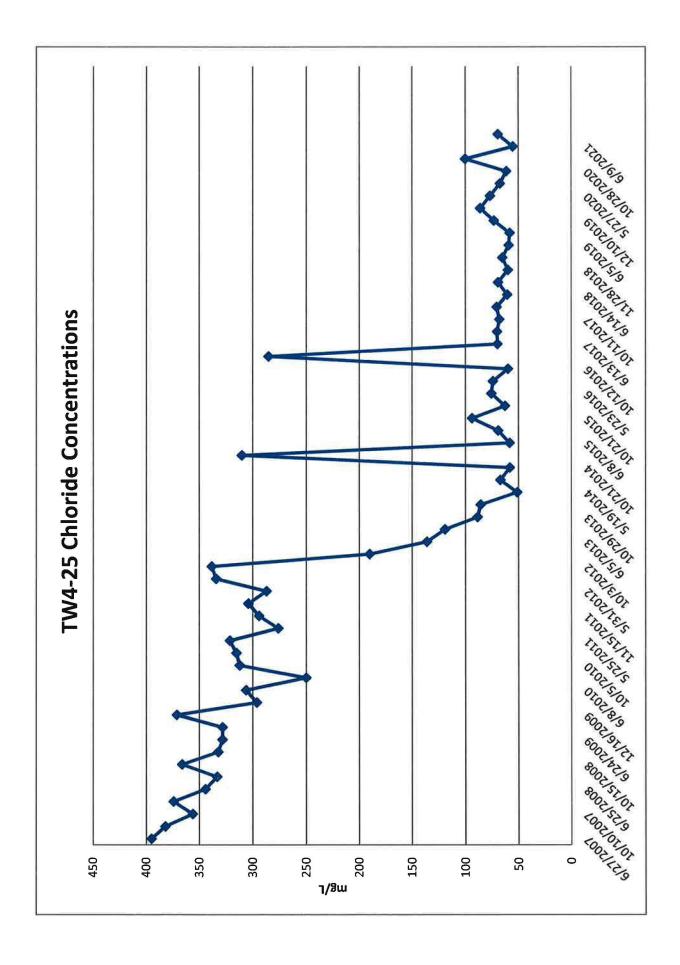


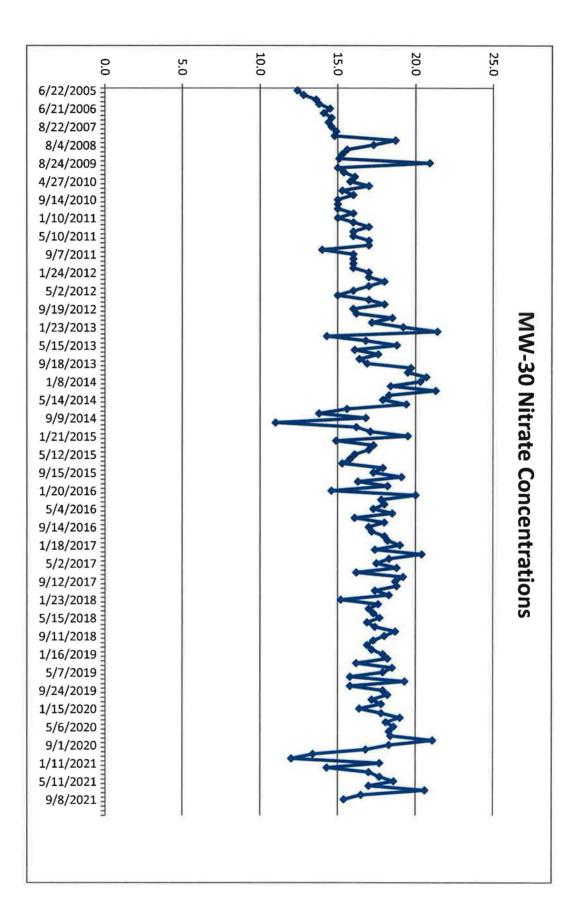


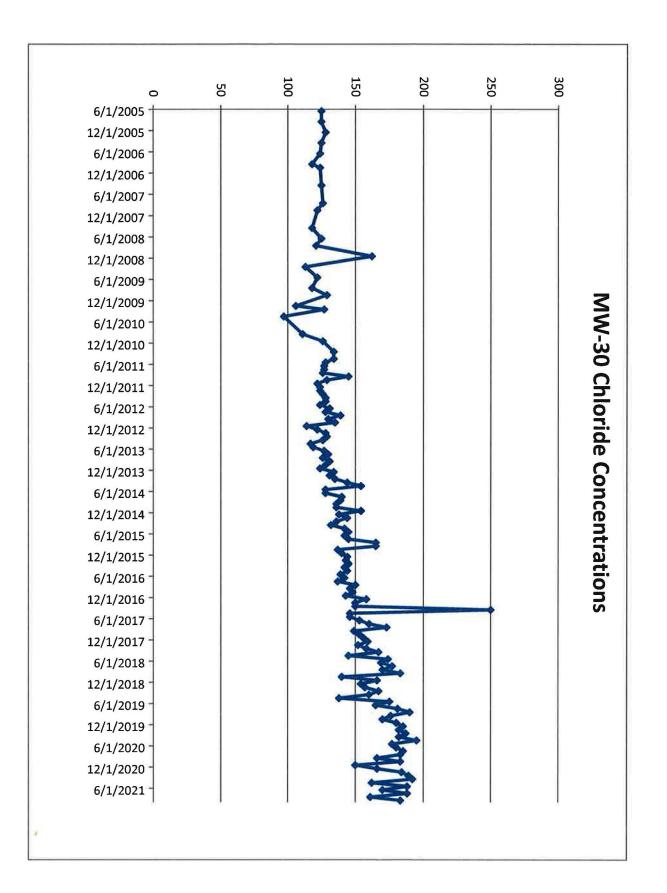


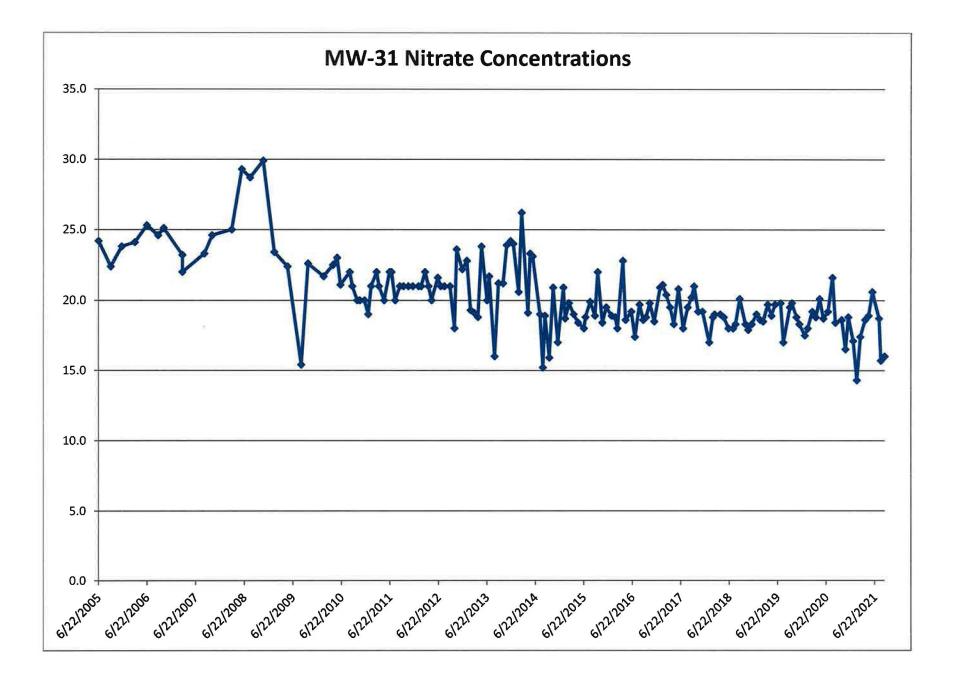


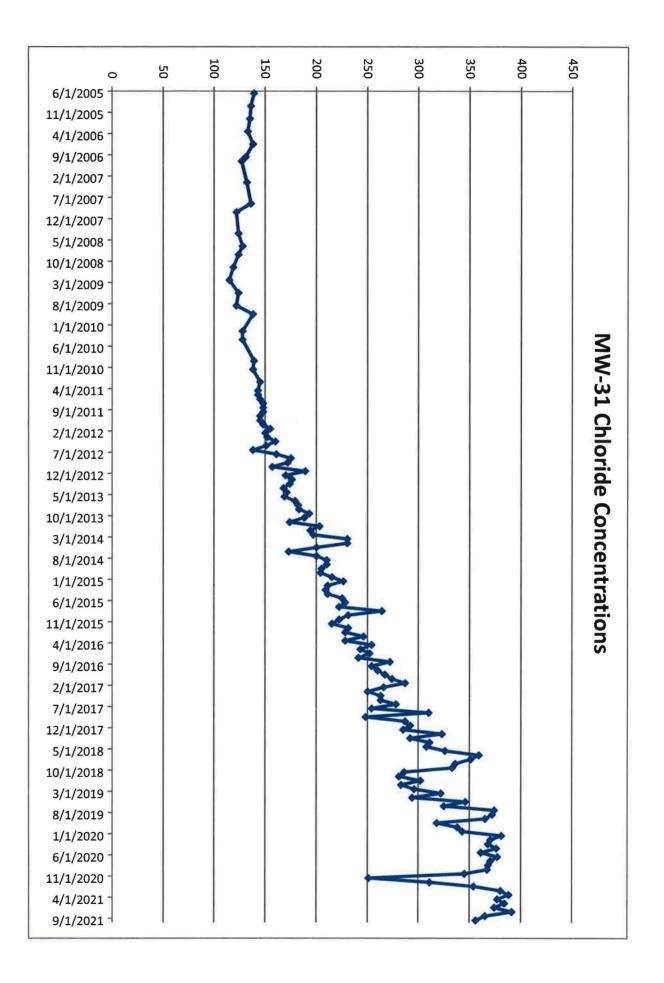












Tab L

CSV Transmittal Letter

Kathy Weinel

From:	Kathy Weinel	
Sent:	Tuesday, November 2, 2021 12:09 PM	
То:	Phillip Goble	
Cc:	Thomas Rushing; David Frydenlund; Logan Shumway; Garrin Palmer; Scott Bakken	
Subject:	Transmittal of CSV Files White Mesa Mill 2021 Q3 Groundwater Monitoring	
Attachments:	Q3 2021 DTW all programs.csv; Q3 2021 GW Analytical Data.csv; Q3 2021 GW Field	
	Data.csv	

Dear Mr. Goble,

Attached to this e-mail is an electronic copy of laboratory results for groundwater monitoring conducted at the White Mesa Mill during the third quarter of 2021, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel

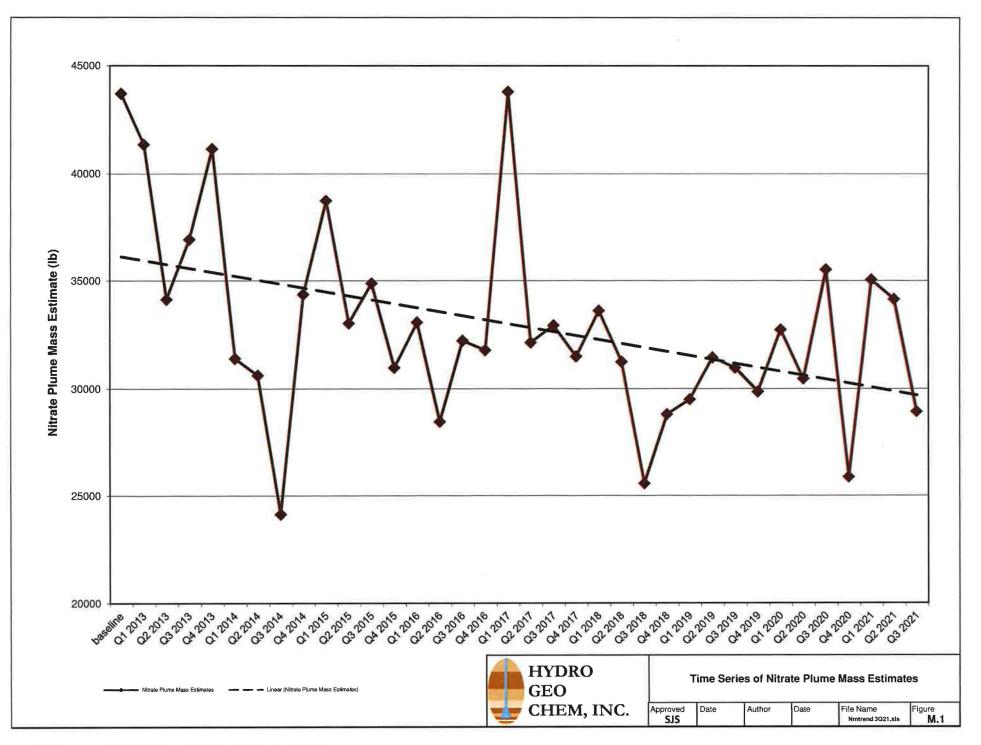
Kathy Weinel Quality Assurance Manager

t:303.389.4134 | c: | f:303.389.4125 KWeinel@energyfuels.com

225 Union Blvd., Suite 600 Lakewood, CO 80228

http://www.energyfuels.com

This e-mail is intended for the exclusive use of person(s) mentioned as the recipient(s). This message and any attached files with it are confidential and may contain privileged or proprietary information. If you are not the intended recipient(s) please delete this message and notify the sender. You may not use, distribute print or copy this message if you are not the intended recipient(s).


Tab M

Residual Mass Estimate Analysis Figure

.

Tab M – Figures

1

Tab M - Tables

The Residual Mass Estimate Analysis Tables

Table M.1 Residual Nitrate Plume Mass

	residual
	residual plume
quarter	mass (lb)
baseline	43700
Q1 2013	41350
Q2 2013	34140
Q3 2013	36930
Q4 2013	41150
Q1 2014	31410
Q2 2014	30620
Q3 2014	24140
Q4 2014	34370
Q1 2015	38740
Q2 2015	33042
Q3 2015	34880
Q4 2015	30980
Q1 2016	33083
Q2 2016	28465
Q3 2016	32230
Q4 2016	31798
Q1 2017	43787
Q2 2017	32145
Q3 2017	32939
Q4 2017	31501
Q1 2018	33616
Q2 2018	31257
Q3 2018	25568
Q4 2018	28805
Q1 2019	29509
Q2 2019	31455
Q3 2019	30976
Q4 2019	29870
Q1 2020	32740
Q2 2020	30467
Q3 2020	35525
Q4 2020	25875
Q1 2021	35052
Q2 2021	34143
Q3 2021	28932

Notes:

lbs = pounds